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1. Introduction

In [1], Scherk and Schwarz gave an ansatz for a non-trivial dimensional reduction of a

supergravity theory that gives a theory with gauge symmetry, mass terms and a scalar

potential. The dimensional reduction from D+d dimensions is on a d dimensional internal

manifold X with a basis of nowhere-vanishing one-forms σm specified by a vielbein σm
i(y)

σm = σm
i(y)dyi (1.1)

where yi are coordinates on X (i, j = 1, . . . , d, m,n = 1, . . . , d). The one-forms are used in

the metric ansatz

ds2
D+d = e2αϕ(x)ds2

D + e2βϕ(x)gmn(x)νmνn (1.2)

where M is the D-dimensional spacetime with metric ds2
D and coordinates xµ. The one-

forms νm are

νm = σm − Am (1.3)

and the one-forms Am = Am
µ (x)dxµ are Kaluza-Klein vector fields (graviphotons). The

internal metric gmn(x) and the warp factor ϕ(x) are scalars in the dimensionally reduced

theory, while α, β are constants that will be fixed in section 2. There is a similar ansatz

for the reduction of other fields. For example, for a p-form gauge potential

B̂(p) = B(p) + B(p−1)m ∧ νm +
1

2!
B(p−2)mn ∧ νm ∧ νn + · · · (1.4)

Completeness of the basis implies that the one-forms satisfy a structure equation of

the form

dσm +
1

2
fnp

mσn ∧ σp = 0 (1.5)

If the coefficients fnp
m are constant, then the dependence of the dimensionally reduced

theory on the internal coordinates y drops out [1]. The integrability condition for (1.5) is

then the Jacobi identity

f[mn
qfp]q

t = 0 (1.6)

so that fnp
m are the structure constants for some Lie group G, and the reduced theory has

a local G gauge symmetry for which the gauge fields are the Am. For a reduction of the

action to be possible, it is necessary [1] that the structure constants further satisfy

fmn
n = 0 (1.7)

If this condition is not satisfied, then it is possible to reduce the field equation, even though

it may not be possible to reduce the action [3].

The internal space X is sometimes referred to as a twisted torus, and the matrix

σm
i(y) can be thought of as twisting the frames with respect to the coordinate basis.

Indeed, the fields gµν , Am
µ , gmn, ϕ and Bµ1...µp , Bµ1...µp−1m, Bµ1...µp−2mn . . . . etc are in one-

to-one correspondence with the ones that would arise from reduction on a d-torus, and the

reduced theory is a massive deformation of that arising from a torus reduction. Particular

examples of such reductions can arise from first reducing on T d−1 and then reducing on
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the final S1 with a geometric duality twist [2]. In such examples this is equivalent to the

reduction of a torus bundle over a circle [7], which can be thought of as a twisting of the

torus T d. However, an important class of examples are those in which G is compact and

the internal manifold is the group manifold G and it is clearly misleading to refer to such

a group manifold as a twisted torus. There are more general examples in which G is non-

compact, but in which the Scherk-Schwarz ansatz nonetheless gives a consistent truncation

to a well-defined D-dimensional field theory.

The Scherk-Schwarz construction gives a truncation of a D+d dimensional field theory

in a particular background to give a D-dimensional field theory with a finite number of

fields. A long-standing question has been how to extend this to the full Kaluza-Klein

or string theory. For the dimensional reduction of a D + d dimensional field theory, one

would expect towers of massive Kaluza-Klein modes and one would like to know how

to calculate the spectrum and whether there is a mass gap. One way of obtaining the

Scherk-Schwarz reduction is to reduce on the group manifold G and then truncate to the

y-independent sector. This would give the same D dimensional field theory discussed

above, and in the case in which G is compact gives a compactification of the original

theory. However, if G is non-compact, then if one were to include the y-dependence one

would expect a continuous mass spectrum in general. A well-behaved Kaluza-Klein theory

with a discrete mass spectrum would be obtained if there was a compact space X such that

compactification on X could be truncated to reproduce the Scherk-Schwarz reduction. This

would then allow the construction to be extended to compactification of string theory or

M-theory on X .

The issue of finding such a X and hence understanding the Scherk-Schwarz reduction

as a compactification was addressed in [2]. If G is compact, one simply takes X to be the

group manifold with the σ the left-invariant forms for which (1.5) is the Maurer-Cartan

equation. There is a left-action GL and a right-action GR of the group G on the group

manifold. The Scherk-Schwarz ansatz is the most general one that is invariant under GL so

that the Scherk-Schwarz reduction is a compactification followed by a truncation to a GL-

invariant sector. The metric (1.2) will not be invariant under GR unless gmn is chosen to be

an invariant metric (otherwise the background will break GR to the subgroup preserving

gmn). The one-forms νm are invariant under GL but transform covariantly under a local

(xµ-dependent) action of GR, which becomes a gauge symmetry in the compactified theory,

with the frame indices m,n becoming adjoint gauge indices, so that e.g. gmn transforms in

the symmetric bi-adjoint representation of the gauge group G.

For non-compact G, one requires a compact space X with frame fields satisfying (1.5).

Then X must be locally isomorphic to the group manifold G, but this need not be true

globally. Moreover, the consistency of the ansatz requires that the frame fields should be

globally defined and nowhere-vanishing, so that X must be parallelizable. (For example,

suppose that the σm are sections of the frame bundle of the internal space, so that in

overlaps of patches on X in which the coordinates y, y′ are related by a diffeomorphism

y′(y), then σ′m(y′(y)) = Λm
n(y)σn(y) for some local frame rotation Λm

n(y) and the cor-

responding internal metrics would need to be related by gmn = g′pqΛ
p
mΛq

n, which would

not allow them to be indpendent of y.) This implies that the internal manifold must ei-
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ther be the group manifold itself, or the group manifold identified under the action of a

discrete subgroup Γ of GL [2]. It is important that Γ acts as a subgroup of GL, so that the

one-forms σ are invariant under Γ and the local form of the ansatz takes the same form

on G or G/Γ. Thus for a compactification to be possible, one requires that there exist a

discrete subgroup Γ of G such that identifying the group manifold under the left action of

Γ gives a compact space X = G/Γ which can be taken as the compactifying space [2]. A

necessary condition for the existence of such a Γ is that the structure constants satisfy the

condition (1.7).

If there is a compact space X = G/Γ, then supergravity, string theory or M-theory

can be compactified on X in the usual way. The Scherk-Schwarz construction is then a

consistent truncation of the full compactified theory to a D-dimensional effective field the-

ory with fields gµν , Am
µ , gmn, ϕ and Bµ1...µp , Bµ1...µp−1m, Bµ1...µp−2mn . . . . etc. Note that this

truncated set may not contain all the light fields in general. For example, if G is compact

and Γ is trivial, then at the special point in moduli space in which gmn is proportional to

the Cartan-Killing metric and all the form gauge fields vanish, the background has isom-

etry GL × GR which will be a gauge symmetry in the reduced theory, so that there will

be 2d massless Yang-Mills gauge fields. The Scherk-Schwarz construction truncates this

theory to a GL-invariant sector of the low-energy theory with only d gauge fields and gauge

symmetry GR.

In this paper, we will consider the compactification of M-theory on d-dimensional

twisted tori X = G/Γ with flux. This has a truncation to a Scherk-Schwarz reduction

of eleven dimensional supergravity [4] in which the ansatz for the 3-form gauge field Ĉ is

generalised to include a flux for the field strength Ĝ = dĈ of the form

K =
1

24
Kmnpqσ

m ∧ σn ∧ σp ∧ σq (1.8)

for some constant coefficients Kmnpq; such a flux is manifestly invariant under GL. This

generalises the compactification of string theory on twisted tori with flux [2] that truncate to

generalised Scherk-Schwarz reductions with flux [2, 5, 6]. Such reductions of 11-dimensional

supergravity have also been considered in [8 – 15].

The O(d, d) covariant formulation of string theory reduced on a twisted torus, studied

in [5, 2] is very suggestive. It is natural to ask whether this generalises to M-theory

compactifications, and whether these can be written in a way that is covariant under the

action of a duality group. We consider general Scherk-Schwarz compactifications of eleven

dimensional supergravity with flux and analyse the gauge symmetry. In this case the

generators Xm related to the B(1)m fields in [2] are replaced by generators Xmn = −Xnm

which can be associated with the field C(1)mn which arises from the dimensional reduction

of the three form potential Ĉ of the eleven dimensional theory.

The outline of the paper is as follows: In section two we give the Scherk-Schwarz re-

duction of eleven dimensional supergravity, where there is a non-trivial flux on the four

form, to arbitrary dimensions. In section three we study the symmetries of this theory, in

particular we show that the symmetry algebra of this theory is not a Lie algebra in general,

but contains a Lie subalgebra. Section four deals with symmetry breaking and mass mech-
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anisms in such reductions and then finally in section five we consider the writing of these

theories in a manifestly Ed(d)-covariant form. In section six we discuss the implications of

our results for M-Theory.

2. Scherk-Schwarz reduction of eleven dimensional

supergravity with flux

The action of eleven dimensional supergravity is

S =

∫
LB + LF (2.1)

where the Lagrangian for the bosonic sector is

LB = R̂ ∗ 1 −
1

2
∗ Ĝ ∧ Ĝ +

1

6
Ĝ ∧ Ĝ ∧ Ĉ (2.2)

and the four-form field strength Ĝ(4) is defined in terms of a three form potential Ĉ(3)

Ĝ = dĈ (2.3)

LF is the Fermi sector involving the gravitino ψ̂µ. In this paper the fermions are set to zero

and we consider a Scherk-Schwarz reduction with flux of the bosonic sector following [2, 5,

6].

We adopt the metric ansatz (1.2) and the GL-invariant flux ansatz

Ĝ =
1

24
Kmnpqσ

m ∧ σn ∧ σp ∧ σq + · · · (2.4)

for constant Kmnpq. We require that the constants Kmnpq satisfy the algebraic identity

K[mnp|sf|qt]
s = 0 (2.5)

so that the flux is closed and so locally there is a 3-form $(3) such that

d$(3) =
1

24
Kmnpqσ

m ∧ σn ∧ σp ∧ σq (2.6)

In general $(3) is not defined globally. Then the GL-invariant reduction ansatz for the

three-form is

Ĉ = C(3) + C(2)m ∧ νm +
1

2
C(1)mn ∧ νm ∧ νn +

1

6
C(0)mnpν

m ∧ νn ∧ νp + $(3) (2.7)

The field strength Ĝ = dĈ is

Ĝ = G(4) + G(3)m ∧ νm +
1

2
G(2)mn ∧ νm ∧ νn +

1

6
G(1)mnp ∧ νm ∧ νn ∧ νp

+
1

24
G(0)mnpqν

m ∧ νn ∧ νp ∧ νq (2.8)
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where the reduced field strengths are

G(4) = dC(3) − C(2)m ∧ Fm −
1

24
KmnpqA

m ∧ An ∧ Ap ∧ Aq

G(3)m = DC(2)m − C(1)mn ∧ Fn +
1

6
KmnpqA

n ∧ Ap ∧ Aq

G(2)mn = DC(1)mn − C(2)pfmn
p − C(0)mnpF

p −
1

2
KmnpqA

p ∧ Aq

G(1)mnp = DC(0)mnp − 3C(1)[m|qf|np]
q + KmnpqA

q

G(0)mnpq = −6C(0)[mn|tf|pq]
t − Kmnpq (2.9)

We note the appearance of Chern-Simons-type terms arising from the flux. This will have

important consequences for the gauge algebra of the reduced theory as we shall discuss in

the following sections. The GR-covariant derivatives are

DC(2)m = dC(2)m + fmp
nC(2)n ∧ Ap

DC(1)mn = dC(1)mn + 2f[m|q
pC(1)|n]p ∧ Aq

DC(0)mnp = dC(0)mnp + 3f[m|t
qC(0)|np]qA

t (2.10)

The zero-curvature equations G(p) = 0 define a Free Differential Algebra [9, 10, 13, 14].

The Bianchi identity dĜ = 0 gives the set of identities

dG(4) + G(3)m ∧ Fm = 0

DG(3)m + G(2)mn ∧ Fn = 0

DG(2)mn + G(1)mnp ∧ F p = 0

DG(1)mnp + G(0)mnpqF
q = 0

DG(0)mnpq = 0 (2.11)

where Fm = dAm + 1
2fnp

mAn ∧ Ap is the graviphoton field strength.

We now have the necessary information to give the reduction to D dimensions of the

Lagrangian (2.2) on the d dimensional twisted torus X with metric ansatz (1.2) and 3-form

ansatz (2.7). Up to boundary terms, the bosonic Lagrangian reduced to D-dimensions is

LD = LR + L bG
+ Lcs

D + V ∗ 1 (2.12)

where LR arises from the reduction of the eleven dimensional Einstein-Hilbert Lagrangian

LR = R ∗ 1 −
1

2
∗ dϕ ∧ dϕ −

1

2
gmpgnq ∗ Dgmn ∧ Dgpq −

1

2
e2(β−α)ϕgmn ∗ Fm ∧ Fn (2.13)

where Dgmn = dgmn + gmpfnq
pAq + gnpfmq

pAq and

α = −

(
d

2(D − 2)(D + d − 2)

) 1
2

β =

(
D − 2

2d(D + d − 2)

) 1
2

(2.14)

have been chosen to give the dilaton kinetic term the canonical normalisation and ensure the

Lagrangian has an Einstein-Hilbert term without any conformal prefactors. The reduction

of the four form field strength kinetic term gives

L bG
= −

1

2
e−4αϕ ∗ G(4) ∧ G(4) −

1

2
e−2(β+α)ϕgmn ∗ G(3)m ∧ G(3)n
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−
1

2
e−4βϕgmngpq ∗ G(2)mp ∧ G(2)nq

−
1

2
e−2(3β−α)ϕgmngpqgts ∗ G(1)mpt ∧ G(1)nqs (2.15)

The Scherk-Schwarz reduction generates a potential V in the effective theory where

V = −
1

4
e2(α−β)ϕ

(
gmngpqgtsfpt

mfqs
n + 2gmnfqm

pfpn
q
)

−
1

2
e−4(2β−α)ϕgmngpqgtsgljG(0)mptlG(0)nqsj (2.16)

Both the geometry and the flux contribute to the potential. The Lcs
D are dimension depen-

dent terms arising from the reduction of the eleven dimensional Chern-Simons term

Lcs
D+d =

1

6
Ĝ ∧ Ĝ ∧ Ĉ (2.17)

to D-dimensions. The reduction of the Chern-Simons term is given explicitly in the ap-

pendix and generalises that of [16] to include flux. Such reductions to D = 4 have been

considered in [8, 9].

3. Gauge symmetry algebra

In this section we consider the gauge symmetries of the reduced Lagrangian. The gauge

group arises from anti-symmetric tensor transformations and diffeomorphisms on the twi-

sted torus. The field strengths are invariant under the infinitesimal anti-symmetric tensor

transformations Ĉ → Ĉ + dλ̂, where

λ̂ = Ω(2) + Λ(1)m ∧ νm +
1

2
λ(0)mnνm ∧ νn

dλ̂ =
(
dΩ(2) + Λ(1)m ∧ Fm

)
+

(
DΛ(1)m + λ(0)mnFn

)
∧ νm

+
1

2

(
Λ(1)pfmn

p + Dλ(0)mn

)
∧ νm ∧ νn +

1

2
λ(0)mqfnp

qνm ∧ νn ∧ νp

(3.1)

and the reduced parameters λ(0)mn, Λ(1)m, and Ω(2) are the parameters of independent

scalar, one-form and two-form anti-symmetric tensor transformations respectively. The

corresponding D-dimensional gauge transformations of the reduced potentials are

δX(λ̂)C(3) = dΩ(2) + Λ(1)m ∧ Fm

δX(λ̂)C(2)m = DΛ(1)m + λ(0)mnFn

δX(λ̂)C(1)mn = Λ(1)pfmn
p + Dλ(0)mn

δX(λ̂)C(0)mnp = 3λ(0)[m|qf|np]
q (3.2)

Diffeomorphisms on the internal manifold lead to a second set of Yang-Mills gauge trans-

formations with parameter ωm(x). The requirement that Ĉ is invariant under general

coordinate transformations and the covariant transformation of the one-form νm

δ(ω)νm = −νnfnp
mωp (3.3)
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induces the following transformations on the reduced potentials

δ(ω)C(3) =
1

6
Kmnpqω

qAm ∧ An ∧ Ap + dΞ(2) + Ξ(1)m ∧ Fm

δ(ω)C(2)m = C(2)nfmp
nωp +

1

2
Kmnpqω

qAn ∧ Ap + DΞ(1)m + Ξ(0)mnFn

δ(ω)C(1)mn = 2C(1)[m|pf|n]q
pωq + Kmnpqω

qAp + Ξ(1)pfmn
p + DΞ(0)mn

δ(ω)C(0)mnp = 3C(0)[mn|qf|p]t
qωt + Kmnpqω

q + 3Ξ(0)[m|qf|np]
q (3.4)

where Ξ̂ ≡ ιω$(3) and

Ξ̂ = Ξ(2) + Ξ(1)m ∧ νm +
1

2
Ξ(0)mnνm ∧ νn (3.5)

has explicit dependence on the internal coordinates1 of X . We remove this dependence on

the internal coordinates by a gauge transformation Ĉ → Ĉ +dλ̂ with parameter λ̂ = −Ξ̂(y)

yielding the infinitesimal gauge transformations

δZ(ω)Am = −Dωm

δZ(ω)C(3) =
1

6
Kmnpqω

qAm ∧ An ∧ Ap

δZ(ω)C(2)m = C(2)nfmp
nωp +

1

2
Kmnpqω

qAn ∧ Ap

δZ(ω)C(1)mn = 2C(1)[m|pf|n]q
pωq + Kmnpqω

qAp

δZ(ω)C(0)mnp = 3C(0)[mn|qf|p]t
qωt + Kmnpqω

q (3.6)

We have included the transformation of the Kaluza-Klein vector fields Am.

The gauge symmetries (δZ(ω), δX (λ̂)) generate the gauge algebra

[δZ (ω̃m) , δZ (ωn)] = δZ (fnp
mωnω̃p) − δX (Kmnpqω

pω̃q)

−δW (Kmnpqω
pω̃qAn) − δΣ

(
1

2
Kmnpqω

pω̃qAm ∧ An

)

[δX

(
λ(0)mn

)
, δZ (ωp)] = δX

(
λ(0)mpfnq

pωq
)
− δX

(
λ(0)npfmq

pωq
)

[δW

(
Λ(1)m

)
, δZ (ωp)] = δW

(
Λ(1)nfmp

nωp
)

(3.7)

where the antisymmetric tensor transformations δX(λ̂) has been split into δX(λ(0)mn),

δW (Λ(1)m) and δΣ(Ω). All other commutators vanish and the identities f[mn
qfp]q

t = 0 and

K[mnp|sf|qt]
s = 0 have been used. With a little work, again using the identities f[mn

qfp]q
t =

0 and K[mnp|sf|qt]
s = 0, it can be checked that this algebra satisfies the Jacobi identity

[[δA(α), δB(β)], δC (γ)] + [[δB(β), δC (γ)], δA(α)] + [[δC(γ), δA(α)], δB(β)] = 0 (3.8)

where δA(α), δB(β) and δC(γ) denote any of δZ(ωm), δX(λ(0)mn), δW (Λ(1)m) and δΣ(Ω(2)).

1In general, bΞ will not be left-invariant but the Lagrangian is still invariant under this transformation.
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3.1 Field dependent parameters and Chern-Simons terms

We shall briefly comment on the field dependent terms in the gauge algebra, analogous

to those found in [2] for the Kalb-Ramond field. These terms, surprising at first, arise

generically in theories with field strengths that include Chern-Simons-like terms such as

those in the previous section. As an illustration, consider the simpler case of a three-form

field strength

H(3) = dB(2) −Q(3) (3.9)

where

Q(3) = tr

(
A ∧ dA +

1

3
A ∧ A ∧ A

)
(3.10)

is a Chern-Simons term satisfying dQ(3) = tr(F ∧F ) where F is the two-form field strength

F = dA + A ∧ A. The one-form A transforms as a Yang-Mills connection δZ(ε)A = −Dε.

The requirement that H(3) be gauge invariant means B(2), in addition to the antisymmetric

tensor transformation δX(λ)B(2) = dλ(1), must transform under δZ(ε) as δZ(ε)B(2) = εdA.

The gauge algebra realised on B(2) is then

[δZ(ε), δZ(ε̃)] = δX(εε̃A) (3.11)

which has a field dependent parameter. This is a specific example of a more general

phenomenon involving Chern-Simons terms.

As an example consider the field strength G(3)m with fmn
p = 0 and Kmnpq 6= 0. In

this case we may write

G(3)m = dC(2)m −Q(3)m

Q(3)m = C(1)mn ∧ Fn −
1

6
KmnpqA

n ∧ Ap ∧ Aq (3.12)

where dQ(3)m = G(2)mn ∧ Fn. This leads to the field dependent algebra (3.7).

3.2 Lie subalgebra

The Yang-Mills gauge transformations are δZ(ω), δX(λ(0)) and comparing with the alge-

bra (3.7) and the discussion of [5] suggests that this might correspond to a gauge group

with Lie algebra of the form

[Zm, Zn] = −fmn
pZp + KmnpqX

pq

[Xmn, Zp] = −fpq
mXnq + fpq

nXmq

[Xmn,Xpq] = 0 (3.13)

where Zm and Xmn are the group generators for the transformations δZ(ω) and δX(λ(0))

respectively. The extra field-dependent terms in the algebra (3.7) would then arise from

the Chern-Simons-like terms, as discussed in section 3.1. This would be the direct analogue

of the string case discussed in [2]. However, the algebra (3.13) does not satisfy the Jacobi

identities and so is not a Lie algebra, so the situation cannot be so straightforward.
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To understand the gauge algebra further, consider gauge transformations with param-

eter

λ(0)mn =
1

2
fmn

pλ̆(0)p (3.14)

From (3.2), the effect of the λ̆(0)m transformation can all be absorbed in a redefinition

Λ̆(1)m = Λ(1)m + Dλ̆(0)m (3.15)

so that transformations of this form do not act. This is because, gauge fields C(1)mn of the

form

C(1)mn =
1

2
fmn

pC̆(1)p (3.16)

can be absorbed into a field redefinition

C̆(2)m = C(2)m − DC̆(1)m (3.17)

so that C(2)m becomes massive by ‘eating’ C̆(1)m, the gauge boson of the λ̆(0)m transforma-

tion, so the gauge symmetry with parameter λ(0)mn = 1
2fmn

pλ̆(0)p is broken by any vacuum

of the theory. The remaining gauge fields are the C̆(1)mn that are in some sense orthogonal

to the gauge fields C(1)mn = 1
2fmn

pC̆(1)p. For semi-simple groups, these can be defined by

taking them to be orthogonal to the C̆(1)p with respect to the Cartan-Killing metric, while

the definition for general groups will be postponed until section 4.

The gauge generators Xmn can now be decomposed into a part X̆mn satisfying

fmn
pX̆mn = 0 and a part Xp = fmn

pX̆mn generating the transformations with param-

eter λ(0)mn = 1
2fmn

pλ̆(0)p. As we have seen, the X̆p transformations are broken by a choice

of vacuum, leaving the algebra of Zm and X̆mn transformations given by

[Zm, Zn] = −fmn
pZp + KmnpqX̆

pq

[
X̆mn, Zp

]
= −fpq

mX̆nq + fpq
nX̆mq

[
X̆mn, X̆pq

]
= 0 (3.18)

In this case, the Jacobi identity holds identically

[[Zm, Zn], Zp] + [[Zp, Zm], Zn] + [[Zn, Zp], Zm] = Kmnpqfts
qX̆ts = 0 (3.19)

by virtue of the condition fmn
pX̆mn = 0 and this is a Lie sub-algebra of the full symmetry

group.

4. Symmetry breaking and examples of flux reductions

The reduction on a twisted torus with flux gives rise to a compactified theory with the

gauge algebra (3.7). This symmetry will in general be spontaneously broken by any given

vacuum of the theory. First, some of the gauge symmetry is non-linearly realised, and as

a non-linearly realised transformation acts as a shift on certain fields φ, δφ = α + O(φ),

it cannot be preserved by any vacuum expectation value of φ and so is necessarily broken

– 10 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
6

by any vacuum, so that the gauge group is necessarily broken down to its linearly realised

subgroup. Then any given vacuum solution (e.g. one arising from a critical point of the

scalar potential) can then break the linearly realised subgroup further to the subgroup

preserving that vacuum.

In this section, we will discuss the first stage of symmetry breaking down to the linearly

realised subgroup that is generic for any solution. For vacua with vanishing scalar expecta-

tion value, this is the complete breaking, but for non-trivial scalar expectation values there

will be further breaking through the standard Higgs mechanism. The transformation for

the scalar fields C(0)mnp is

δC(0)mnp = 3λ(0)[m|qf|np]
q + Kmnpqω

q + O(C(0)mnp) (4.1)

and from this one can read off the non-linearly realised symmetries, i.e. the ones realised as

shifts of scalar fields. The non-linear transformation of the C(1)mn fields occurs in a similar

way

δC(1)mn = Λ(1)pfmn
p + O(C(1)mn) (4.2)

4.1 Trivial flux

Consider the flux

Kmnpq = ζmntfpq
t − ζmptfnq

t + ζmqtfnp
t − ζnqtfmp

t + ζnptfmq
t − ζqptfmn

t (4.3)

Where ζmnp = ζ[mnp]. The effect of this flux is removed by the field redefinition

C(3) → C(3) +
1

6
ζmnpA

m ∧ An ∧ Ap

C(2)m → C(2)m +
1

2
ζmnpA

n ∧ Ap

C(1)mn → C(1)mn + ζmnpA
p

C(0)mnp → C(0)mnp + ζmnp (4.4)

This flux is therefore physically trivial, and any such flux produces physics that is equivalent

to that of a model without flux.

4.2 Reduction with semi-simple group G

Consider the reduction of M-Theory on a twisted torus X ' G/Γ where G is a, not

necessarily compact, semi-simple group, and Γ ⊂ GL is a discrete subgroup such that G/Γ is

compact. The Scherk-Schwarz reduction on such a twisted torus produces a theory in which

the C(2)m, C(1)mn and C(0)mnp fields all become massive through the Higgs mechanism. For

example, the term in the reduced Lagrangian responsible for the C(1)mn field mass is

L = −
9

2
e2(3β−α)ϕ̄ḡmq ḡntḡpsC(1)[m|lf|np]

lC(1)[q|hf|ts]
h + · · · (4.5)

where ḡ and ϕ̄ are vacuum values for the scalar fields. In addition to the appearance of

Goldstone scalars χ(0)mn for the broken symmetries with scalar parameter λ(0)mn, the sym-

metry breaking requires a set of Goldstone one-forms χ(1)m corresponding to the breaking
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of the gauge symmetries with parameter Λ(1)m, a feature that is qualitatively distinct from

the analysis of string theory discussed in [2], but is generic for higher degree forms. For a

semi-simple group the Cartan-Killing metric ηmn, defined by

ηmn = −
1

2
fmp

qfnq
p (4.6)

is non-degenerate and invertible. The inverse Cartan-Killing metric ηmn may be used to

raise the indices of the structure constants fm
np = ηnqfmq

p. If the flux is zero, the full

gauge algebra of the theory (3.7) corresponds to the Lie algebra

[Zm, Zn] = −fmn
pZp

[Xmn, Zp] = −fpq
mXnq + fpq

nXmq

[W m, Zn] = −fnp
mW p (4.7)

with all other commutators vanishing. For convenience, the constants Oqt
mnp and Πmnp

qt are

defined2

Oqt
mnp = 3δq

[mfnp]
t

Πmnp
qt =

1

2
δ[m

qft
np] (4.8)

These constants will be seen to play an analogous role in the three-form symmetry breaking

mechanism to fmn
p and fp

mn in [2]. The fields which become massive are singlets of the

antisymmetric tensor transformations generated by δX(λ(0)mn) and δX(Λ(1)m). The gauge

transformation generated by δX(Ω(2)) is not charged under the right action GR acting on

X and therefore plays no role in the symmetry breaking mechanism defined here. This is

to be expected since the only field that is charged under this symmetry is C(3) which has

no mass-like term in the Lagrangian and is expected to remain the massless gauge boson

of the δX(Ω(2)) transformation. This mechanism works analogously to the two-form case

for the δW (Λ(1)m) symmetry, however the δX(λ(0)mn) symmetry requires more care and it

is consideration of this sector that motivates the introduction of the constants Oqt
mnp and

Πmnp
qt above. The δX(λ(0)mn) parameter is decomposed into irreducible representations of

GR

λ(0)mn = λ̆(0)mn +
1

2
fmn

pλ̆(0)p (4.9)

where fp
mnλ̆(0)mn = 0. The δX(λ(0)mn) gauge transformation is now split into two orthog-

onal parts δX(λ̆(0)mn) and δX(λ̆(0)m). The potentials transform as

δX(λ(0)mn)C(2)m = λ̆(0)mnFn +
1

2
D2λ̆(0)m

δX(λ(0)mn)C(1)mn = Dλ̆(0)mn +
1

2
fmn

pDλ̆(0)p

δX(λ(0)mn)C(0)mnp = Oqt
mnpλ̆(0)qt (4.10)

2Various useful identities that these constants satisfy may be found in the appendix.
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where the equality D2λ(0)m = λ(0)pfmn
pFn has been used. Note that λ̆(0)m now only enters

into the gauge transformations as the covariant derivative Dλ̆(0)m, and Oqt
mnpfqt

s = 0 by

virtue of the identity (1.6) so that C(0)mnp is a singlet of the transformation generated

by λ̆(0)m. The corresponding Goldstone fields of the broken δX(λ̆(0)m), δX(λ̆(0)mn) and

δX(λ(1)m) symmetries are defined as

χ(0)mn = Πpqt
mnC(0)pqt

χ(1)m =
1

2
fm

npC(1)np (4.11)

where fp
mnχ(0)mn = 0. Using (4.10) and (4.11) one finds that these fields transform as3

δ(ω, λ̂)χ(0)mn = λ̆(0)mn + χ(0)mpfnq
pωq + χ(0)pnfmq

pωq

δ(ω, λ̂)χ(1)m =
1

2
Dλ̆(0)m + Λ(1)m + χ(1)nfmp

nωp (4.12)

It is now simple to construct potentials C̆ that are invariant under the infinitesimal

δX(λ̆(0)mn), δX(λ̆(0)m) and δX(Λ(1)m) transformations

C̆(3) = C(3) − χ(1)m ∧ Fm

C̆(2)m = C(2)m − χ(0)mnFn − Dχ(1)m

C̆(1)mn = C(1)mn − Dχ(0)[mn] − fmn
pχ(1)p

C̆(0)mnp = C(0)mnp − Oqt
mnpχ(0)qt (4.13)

C̆(3) is not a δX(Ω(2)) singlet and as such it remains massless, as expected. (In section

5 we will consider cases in seven dimensions with a non trivial flux in which C(3) has a

topological mass arising form the Chern-Simons term in the Lagrangian.) Note that the

Goldstone boson χ(1)m for the broken symmetry with parameter Λ(1)m is also the gauge

boson for the symmetry with parameter λ̆(0)m. Thus the gauge boson for the symmetry

generated by δX(λ̆(0)m) is eaten by the C(2)m fields. This is a general result that extends

to reductions on twisted tori X = G/Γ where G is not semi-simple. We shall ignore the

symmetry δX(λ̆(0)m) in the following as it is always spontaneously broken in this way.

Since these field redefinitions enter in the same form as gauge transformations the form of

the field strengths will be unchanged, except that now we have massive C̆ fields which are

singlets under the gauge transformations where we previously had C fields, which transform

under the anti-symmetric gauge transformations. The algebra gauged by the C̆ fields is

[Zm, Zn] = −fmn
pZp (4.14)

All other commutators vanish, and so the gauge symmetry is broken to the semi-simple

group GR i.e. the algebra generated by Zm and Xmn is broken to the subalgebra (4.14)

generated by Zm. The symmetry may be broken further by a choice of the constant metric

vacuum expectation ḡmn. The gauge group GR will be broken to the isometry group of the

metric Gḡ ⊂ GR, for which

δZ(ω)ḡmn = 2ḡ(m|pf|n)q
pωq = 0 (4.15)

3Note that the definition of χ(0)mn means that is has general symmetry, in particular χ(0)(mn) 6= 0.
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The Cartan-Killing metric preserves the full gauge group but a more general choice of

metric, as is allowed in the Scherk-Schwarz ansatz, will not giving a reduced theory in

which the graviphotons of the broken symmetries become massive with mass

LD = − (ḡmnḡpqfmt
pfns

q − 2ηts) ∗ At ∧ As + · · · (4.16)

In the case of a two form B̂(2) with flux Kmnp it was shown [2, 6] that one could

introduce the flux Kmnp = fmnp = η[m|qf|np]
q, for semi-simple Lie group G. It is natural

to ask whether there is an analogous form for the four-form flux, constructed from the

structure constants with an ansatz of the form

Kmnpq = ζ[mn|sf|pq]
s (4.17)

in which case there might also be similar field redefinitions that could be found explicitly.

However, in this case the integrability condition K[mnp|sf|qt]
s = 0 implies that any flux of

the form (4.17) must have a tensor ζmnp = ζ[mnp] in which case the flux is a trivial flux of

the form discussed in section 4.1

4.3 T d reduction with flux

If fmn
p = 0, then the group GR is abelian and the internal manifold (after discrete identi-

fications to compactify, if necessary) is a torus. With flux K, the gauge Lie algebra (3.18)

for such compactifications is

[Zm, Zn] = KmnpqX
pq (4.18)

with all other commutators vanishing. The inclusion of the flux in the field strength

G(1)mnp = KmnpqA
q + · · · gives a mass-like term for the graviphotons in the low energy

action. For a given vacuum expectation value of the scalars ḡ and ϕ̄ the graviphoton mass

term is

LD = −
1

2
M2

lh ∗ Al ∧ Ah + · · · (4.19)

where the mass matrix Mmn is given by

M2
lh = e−ϕ̄ḡmnḡpq ḡtsKmptlKnqsh (4.20)

The internal index m can be split into m = (m′, m̄), where m′ = 1, 2 . . . d′ and m̄ =

d′ + 1, d′ + 2 . . . d such that, with a suitable choice of coordinates,

Kmnpq̄ = 0 Km′n′p′q′ 6= 0 (4.21)

Then the transformation of the C(0)mnp scalars is

δC(0)m′n′p′ = Km′n′p′q′ω
q′ δC(0)mnp̄ = 0 (4.22)

The transformations generated by Zm′ with parameters ωm′

are spontaneously broken,

with C(0)m′n′p′ the Goldstone fields that are eaten by the gauge fields Am′

. The Lie group

is broken to the d(d + 1)/2− d′ dimensional abelian subgroup Υ(1)
1
2
d(d+1)−d′ generated by

Zm̄ and Xmn with parameters ωm̄ and λ(0)mn respectively.
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Let K̃m′n′p′q′ be any constants satisfying K̃m′n′p′q′Kn′p′q′t′ = δm′

t′ . Then the Goldstone

fields χ(0)
m′

may be defined by

χ(0)
m′

= K̃m′n′p′q′C(0)n′p′q′ (4.23)

transforming as a shift symmetry. The χ(0)
m′

transforms as

δχ(0)
m′

= ωm′

(4.24)

The massive graviphotons Ăm′

= Am′

+ dχ(0)
m′

may then be defined which are singlets of

the gauge transformations.

4.4 General case

In general the group upon which the reduction is based G may be non-semi-simple and the

flux will only be constrained to satisfy K[mnp|sf|qt]
s = 0. To begin, as in section 4.3, the

parameter λ(0)mn is decomposed into irreducible representations of GR

λ(0)M = λ̆(0)M +
1

2
fM

mλ̆(0)m (4.25)

where the compound index4 {M} = {[mn]} where M = 1, 2 . . .
(d
2

)
has been used. Even

though λ̆(0)m does not appear as a shift symmetry this symmetry is broken in the effective

theory as demonstrated for the semi-simple case in section 4.2. The transformations of the

potentials with shift symmetries are

δ(ω, λ(0))C(0)mnp = λ̆(0)qtO
[qt]
mnp + Kmnpqω

q + · · ·

δ(ω,Λ(1))C(1)mn = Λ(1)pfmn
p +

1

2
fM

mDλ̆(0)m + · · · (4.26)

The breaking of each of the symmetries and the definition of their respective Goldstone

bosons are considered in turn. First, consider transformations of the scalar fields

δ(ω, λ(0))C(0)Σ = λ̆(0)MOM
Σ + KΣmωm + · · ·

=
(

λ̆(0)M ωm
) (

OM
Σ

KΣm

)
+ · · ·

= α(0)AtAΣ + · · · (4.27)

The compound index {Σ} = {[mnp]}, Σ = 1, 2 . . .
(
d
3

)
has been defined for convenience.

The basis A = 1, 2, . . .
(d
2

)
is chosen such that tAΣ takes the form

tAΣ =
(

tA
′

Σ 0
)

=

(
tA

′

Σ′ 0

0 0

)
(4.28)

where the split {A} = {(A′, Ā)} is defined by the CoKernel and Kernel of the map

t : R
(d

2) → R
(d

3) (4.29)

4
`

d

n

´
= d!

n!(d−n)!
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defined by α(0)A → α(0)AtAΣ. The indices take values A′ = 1, 2, ..d′ and Ā = d′ + 1, . . .
(
d
2

)

in the kernel and cokernel respectively. The choice of the basis {Σ} = {(Σ′, Σ̄)} where

Σ′ = 1, 2, . . . d′ and {Σ̄} = d′ + 1, . . .
(d
3

)
has also been made. The matrix tA

′

Σ′ is square

and one may define an inverse t̃Σ
′

A′ such that tB
′

Σ′ t̃Σ
′

A′ = δB′

A′ . It is then possible to

define the Goldstone boson of the broken symmetry, with parameter α(0)A′ , as

χ(0)A′ = C(0)Σ′ t̃Σ
′

A′ (4.30)

which transforms as

δχ(0)A′ = α(0)A′ + · · · (4.31)

where the dots denote terms linear in χ(0)A′ . The C(0)Σ′ are eaten by the massive C(1)M ′

whilst the C(0)Σ̄ remain as massless scalars, or moduli, of the theory.

Consider the one-form shift symmetry generated by the parameter Λ(1)m. The trans-

formation of the C(1)M field may be written as

δ(λ(0)m,Λ(1)m)C(1)M = fM
m

(
Λ(1)m +

1

2
Dλ̆(0)m

)
+ · · · (4.32)

Interpreting fM
m as a map

f : R
d → R

(d

2) (4.33)

we choose a basis for the kernel of f , labelled by m′ = 1, 2 . . . d′ and a basis for the cokernel

labelled by m̄ = d′ + 1, . . . d. Then {m} = {(m′, m̄)} and {M} = {(M ′, M̄)}. fM
m may

then be written in the form

fM
m =

(
fM

m′

0
)

=

(
fM ′

m′

0

0 0

)
(4.34)

The matrix f̃n′
M ′

is defined such that f̃n′
M ′

fM ′
m′

= δn′
m′

. The transformations then

become

δ(λ̆(0)m′ ,Λ(1)m′)C(1)M ′ = fM ′
m′

(
Λ(1)m′ +

1

2
Dλ̆(0)m′

)
+ O(C(1)M ′)

δ(λ̆(0)m̄,Λ(1)m̄)C(1)M̄ = O(C(1)M̄ ) (4.35)

The symmetries generated by the parameters λ̆(0)m′ and Λ(1)m′ are broken and the corre-

sponding Goldstone bosons are

χ(1)m′ = f̃m′
M ′

C(1)M ′ (4.36)

where

δχ(1)m′ = Λ(1)m′ +
1

2
Dλ̆(0)m′ + · · · (4.37)

The C̆(1)M ′ are eaten by the C(2)m′ which become the massive C̆(2)m′ = C(2)m′ − Dχ(1)m′ ,

whilst the C(1)M̄ and C(2)m̄ remain massless. Various field redefinitions outlined in this

section may be performed to bring the algebra to the form

[TM̄ ,TN̄ ] = −tM̄N̄
P̄TP̄ + hM̄N̄

aTa (4.38)
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where the Ta generate a central extension of the unbroken symmetry generated by TM̄

(with parameter α(0)
M̄ ) and all other commutators vanish. For example, in the case of

compactification on the d + d′ dimensional twisted torus G/Γ = Gd × T d′ where Gd is a

d-dimensional compact semi-simple group manifold, the linearly realised Lie subalgebra is

[Zm, Zn] = −fmn
pZp + KmniX

i (4.39)

where m,n = 1, 2 . . . d label the coordinates ym on Gd and i, j = d + 1, . . . d + d′ label

coordinates yi on the torus T d′ . In this case the isometry generators on the torus Zi

and the gauge transformations Xm are always spontaneously broken following arguments

similar to those of the last section.

5. Duality covariant formulations

In [2] reductions of a field theory containing gravity, a two-form tensor with flux and a

scalar dilaton were studied. The compact internal manifold was a twisted torus X = G/Γ,

where Γ ⊂ GL. It was shown that the lower dimensional theory could be written in an

O(d, d) covariant way where a subgroup L ⊂ O(d, d) was gauged. This was a truncation

of the results of [5] where the effective low energy field theory of the heterotic string was

reduced on a twisted torus with flux. In the heterotic case the reduced Lagrangian could be

written in an O(d, d + 16) covariant way. A natural question to ask is whether the general

eleven dimensional supergravity reduction on a twisted torus with flux may be written in

a Ed(d) covariant form and if so, what is the nature of the interplay between the global

Ed(d) group, U-duality and the gauge symmetry. It is this question that we address in this

section.

5.1 String theory and O(d, d)

First we review the analysis presented in [2] for the sector consisting of a metric ĝ, dilaton

Φ̂ and a three form field strength which may be written locally in terms of a two form

Ĥ(3) = dB̂(2). The low energy Lagrangian is

LD+d = e−
bΦ

(
R̂ ∗ 1 + ∗dΦ̂ ∧ dΦ̂ −

1

2
∗ Ĥ(3) ∧ Ĥ(3)

)
(5.1)

Using the procedure outlined in section 2 the theory described by this Lagrangian is reduced

on a twisted torus with flux

K =
1

6
Kmnpσ

m ∧ σn ∧ σp (5.2)

for Ĥ(3) where we use the Scherk-Schwarz ansatz

B̂ = B(2) + B(1)m ∧ νm +
1

2
B(0)mnνm ∧ νn + $(2) (5.3)

where d$(2) = K. The reduced theory may be written in a manifestly O(d, d) covariant

way [5, 2]

LD = e−φ

(
R ∗ 1 + ∗dφ ∧ dφ +

1

2
∗ G(3) ∧ G(3) +

1

4
LACLBD ∗ DMAB ∧ DMCD
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−
1

2
LACLBDMAB ∗ FC ∧ FD −

1

12
MADMBEMCF tABCtDEF

+
1

4
MADLBELCF tABCtDEF

)
(5.4)

The scalars parameterise the coset O(d, d)/O(d) × O(d)

MAB =

(
gmn −B(0)npg

pm

−B(0)mpg
np gmn + gpqB(0)mpB(0)nq

)
(5.5)

and

G(3) = dB(2) +
1

2

(
LABA

A ∧ FB −
1

6
tABCA

A ∧ AB ∧ AC

)

B(2) = B(2) −
1

2
B(1)m ∧ Am

DMAB = dMAB + MACtCD
BAD + MBCtCD

AAD (5.6)

where the one-forms fit into an O(d, d) vector AA with field strength FA

AA =

(
Am

B(1)m

)
FA =

(
Fm

G(2)m − B(0)mnFn

)
(5.7)

where

G(2)m = DB(1)m + B(0)mn +
1

2
KmnpA

n ∧ Ap (5.8)

Defining tABC = LADtBC
D where LAB is the O(d, d) invariant matrix

LAB =

(
0 1Id
1Id 0

)
(5.9)

the structure constants are tnp
m = fnp

m and t[mnp] = Kmnp. 1Id is the d-dimensional iden-

tity matrix δmn. Upper indices m = 1, . . . , d indicate covariant vectors under the GL(d, R)

subgroup of O(d, d) while lower indices indicate contravariant vectors. The presence of

tAB
C breaks the O(d, d) symmetry of the ungauged theory to the subgroup preserving

tAB
C . However, the theory becomes formally invariant under O(d, d) if the constants

are taken to transform covariantly under O(d, d). In [21], it was argued that (5.4) is

the Lagrangian for general gaugings of this sector of the supergravity theory. Some of

these gaugings cannot arise from conventional compactifications of supergravity but can

arise from non-geometric compactifications [21]. In the string theory, O(d, d) is broken to

O(d, d; Z) and this O(d, d; Z) acts as a T-duality group on the internal space, mixing twist

with flux and in general transforming geometric compactifications to non-geometric ones

such as T-folds [21].

This theory also has a local symmetry generated by the combined gauge transformation

δT (α) = δZ(ω) + δX(λ) (5.10)

where the δZ(ω) are the globally defined right action GR on the internal manifold X =

G/Γ and the δX(λ) are antisymmetric tensor transformations acting on the B-field, where
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αA = (ωm, λm) is the O(d, d) covariant gauge parameter of these transformations. In [2]

the algebra of these infinitesimals was found to be

[δT (α̃), δT (α)] = δ(tBC
AαBα̃C) − δW (L[A|Dt|BC]

AαBα̃CAD)
[
δW (Λ(1)), δT (α)

]
= 0

[
δW (Λ̃(1)), δW (α)

]
= 0 (5.11)

where δW (λ(1)) generates antisymmetric tensor gauge transformations with the one-form

parameter λ(1). The characteristic field dependence in the commutator is a consequence of

Chern-Simons terms of the form (5.6) and arises in a similar way to that seen in section 3.

The Lie algebra subgroup of (5.11), analogous to that of section 3.2, is

[Zm, Zn] = −fmn
pZp + KmnpX

p

[Zm,Xn] = fmp
nXp

[Xm,Xn] = 0 (5.12)

where Zm generators of the right action GR on the twisted torus, as in section 3 and Xm are

generators of the antisymmetric tensor transformations B → B + dλ and m = 1, 2, 3 . . . d.

Combining the generators Zm,Xm, where m = 1, 2, 3 . . . d, into an O(d, d) vector

TA =
(

Zm Xm
)

(5.13)

the Lie algebra may be written as

[TA,TB] = tAB
CTC (5.14)

The gauge generators TA are given in terms of the O(d, d) generators JA
B by an

expression of the form

TA = ΘAB
CJB

C (5.15)

Here Θ is the embedding tensor specifying the embedding of the gauge group into O(d, d).

The generators can be used to define JAB = −JBA = LACJC
B, which satisfy the algebra

[JAB , JCD] = LADJBC + LBCJAD − LACJBD − LBDJAC , (5.16)

In the case at hand, the embedding tensor can be read off explicitly. The generators JA
B

decompose into the GL(d, R) generators Ja
b, Ja

b, Jab, Jab and we find the gauge generators

are

Zm = fp
mnJn

p − fp
mnJp

n −
1

2
KmnpJ

np

Xm =
1

2
fm

npJ
np (5.17)

and the embedding tensor can be read off from this. It is completely specified by the choice

of twist and flux.
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5.2 Heterotic theory and O(d, d + 16)

The previous section is a truncation of the results found in [5] for the heterotic theory. The

low energy effective Lagrangian for the bosonic sector of the heterotic theory is

L10 = e−
bΦ

(
R̂ ∗ 1 + d ∗ Φ̂ ∧ Φ̂ −

1

2
∗ Ĥ(3) ∧ Ĥ(3) −

1

2
tr

(
∗F̂ ∧ F̂

))
(5.18)

where a, b = 1 . . . 16 is a gauge index for the E8 × E8 or Spin(32)/Z2 gauge symmetry

and fab
c are the structure constants and the trace is taken over the gauge indices. Setting

α′ = 1 the field strengths are

F̂ a
(2) = dÂa

(1) +
1

2
fbc

aÂb
(1) ∧ Âc

(1)

Ĥ(3) = dB̂(2) −
1

2
tr

(
Â(1) ∧ dÂ(1) +

2

3
Â(1) ∧ Â(1) ∧ Â(1)

)
(5.19)

The problem of adding flux to B̂(2) is greatly simplified by assuming the generators of

the gauge group lie in the Cartan subalgebra, breaking the gauge symmetry E8 × E8 or

Spin(32)/Z2 → Υ(1)16 for which fab
c = 0. The reduction ansatz for field strengths Ĥ(3)

and F a
(2) are generalised to include the fluxes

Ĥ(3) =
1

6
Kmnpσ

m ∧ σn ∧ σp + · · ·

F a
(2) =

1

2
Ma

mnσm ∧ σn + · · · (5.20)

where Kmnp and Ma
mn are constant5 and satisfy

Ma
[mn|tf|pq]

t = 0 2K[mn|tf|pq]
t = δabM

a
[mnM b

pq] (5.21)

The reduced Lagrangian takes the same form as (5.4) except it is written in terms of

O(d, d + 16) covariant fields. In particular, the scalars parameterise the coset O(d, d +

16)/O(d) × O(d + 16)

MAB = (5.22)

=




gmn −b(0)npg
pm −gmnA(0)n

a

−b(0)mpg
np gmn + gpqb(0)mpb(0)nq + δabA(0)m

aA(0)n
b A(0)m

a + b(0)mpg
pnA(0)n

a

−A(0)n
agmn A(0)m

a + A(0)n
agnpb(0)mp δab + A(0)m

agmnA(0)n
b




where b(0)mn = B(0)mn + 1
2δabA(0)m

aA(0)n
b and A = 1, 2, . . . 2d + 16. There are also the

O(d, d + 16) vector AA and corresponding field strength FA

AA =




Am

B(1)m

Aa
(1)


 FA =




Fm

G(2)m − B(0)mnFn

F a
(2)


 (5.23)

5There are some subtleties in adding a flux to bB(2) in a way that preserves the consistency of the

Scherk-Schwarz truncation. See [5] for details
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and the O(d, d) invariant matrix LAB is replaced by the O(d, d + 16) invariant

LAB =




0 1Id 0

1Id 0 0

0 0 1I16


 (5.24)

As in the previous section, the gauging breaks the global symmetry, but the Lagrangian

is formally invariant under the action of the global O(d, d + 16) if the structure constants

of the gauge group transform as O(d, d + 16) tensors. The O(d, d + 16) rigid symmetry

then maps one gauging into another, in which the gauge algebra remnains the same, but

its embedding in the duality group changes.

The gauge group L ⊂ O(d, d + 16) has symmetry algebra

[δZ(ω̃), δZ(ω)] = δZ(fmn
pωmω̃n) − δY (δabM

b
mnωmω̃n) − δX(Kmnpω

nω̃p) − δX(Kmnpω
nω̃pAm)[

δY (λa
(0)), δZ(ω)

]
= −δX(δabM

b
mnλa

(0)ω
n) − δX(δabM

b
mnλa

(0)ω
nAm)

[
δX(λ(0)), δZ(ωn)

]
= δX(fmn

pλ(0)p
ωn) (5.25)

where δY (λa
(0)) = λa

(0)Ya generates the infinitesimal gauge transformation δAa
(1) = dλa

(0).

All other commutators are zero. The symmetry algebra (3.7) contains the Lie subalgebra

first identified in [5]

[Zm, Zn] = −fmn
pZp − Ma

mnYa + KmnpX
p

[Xm, Zn] = −fnp
mXp

[Ya, Zm] = −δabM
b
mnXn

[Ya, Yb] = [Ya,X
m] = [Xm,Xn] = 0 (5.26)

This algebra may be written in an O(d, d + 16) covariant form (5.14) where the generators

form an O(d, d + 16) vector

TA =
(

Zm Xm Ya

)
(5.27)

The symmetry algebra (5.25) and Lie subalgebra (5.26) can then be written in the O(d, d+

16) covariant form of (5.11) and (5.14) respectively, where the structure constants tAB
C

are given by tmn
p = fmn

p, tmn
a = Mmn

a and tmnp = Kmnp.

5.3 M-theory, gauged supergravity and Ed(d)

Dimensional reduction of a generic field theory coupled to gravity on X ' T d followed by

Kaluza-Klein truncation to the zero modes has a global GL(d, R) symmetry. Reductions of

eleven dimensional supergravity have at least a global GL(d, R) n R
q where the R

q comes

from constant shifts of the three form potential and q = 1
6d(d − 1)(d − 2). The reductions

considered in section three gauge a subgroup of GL(d, R) n R
q. Dualising all p-form gauge

fields with degree p > 1
2D in the ungauged theory changes the global symmetry to a global

Ed(d) symmetry6 [22, 23]. For reductions to odd dimensions, Ed(d) is a symmetry of the

6For d = 6, 7, 8, Ed(d) are the exceptional groups E6(6), E7(7) and E8(8) and for d = 2, 3, 4, 5 the Ed(d)

groups are defined as SL(2; R) × O(1, 1), SL(3; R) × SL(2; R), SL(5; R) and O(5, 5) respectively.
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Lagrangian. For reductions to even dimensions, Ed(d) is a symmetry of the equations

of motion and Bianchi identities [24 – 26, 30]. However one may introduce an auxiliary

Lagrangian, using the doubled formalism of [24, 25], in which the field strength of degree
1
2D is combined with its dual into a single irreducible representation of Ed(d). The number

of physical degrees of freedom is maintained by requiring that this doubled field satisfy a

twisted self-duality condition [24, 26]. Using these doubled fields, a Lagrangian for this

theory may be constructed with manifest Ed(d) global symmetry.

Given a supergravity with an Ed(d) global symmetry of the action (which uses the

doubled formalism in even dimensions), one may seek supersymmetric gaugings of sub-

groups of Ed(d). Many classes of examples have been found, but until recently no coherent

framework for a programme to systematically classify such gauged supergravities had been

found. In [27 – 30] doubled Lagrangians were proposed for the D = 5 and D = 7 gauged

supergravitites with manifest E6(6) and SL(5) covariance respectively. Similar actions are

conjectured to exist in all dimensions. These ‘universal’ Lagrangians are conjectured to

contain all possible gaugings of Ed(d) and are reviewed in the following sections. The gauged

supergravities discussed here that arise from twisted torus reductions with flux arise from

gauging subgroups of the GL(d, R) n R
q that is a symmetry before dualising. Moreover,

the non-abelian interactions of the gauged supergravity provide obstructions to the duali-

sations of p-form gauge fields used in the ungauged theory to obtain the Ed(d) symmetric

form. However, instead of dualising p-form gauge fields to D − p− 2 form gauge fields one

can instead use the doubled form with both p-form gauge fields and D − p− 2 form gauge

fields, using a ‘universal’ lagrangian for the gauged supergravity. This raises the question

as to whether the gaugings obtained from twisted torus reductions can fit into the class of

gaugings of subgroups of Ed(d) of [27 – 30], or whether they provide a separate universal-

ity class. At first glance, the lagrangians seem to be of a rather different form, with our

compactifications giving second order kinetic terms for certain p-form gauge fields, whereas

the corresponding p-form gauge fields in the Ed(d)-covariant formulation have a first order

kinetic term. We show that these kinetic terms are in fact dual actions for the same theory.

The theories then agree at the quadratic level and have the same supersymmetry and gauge

symmetry, so the full non-linear theories should be identical. We check this explicitly in

a particular case, and provide a number of checks on the conjecture that the full theories

arising from twisted torus compactifications with flux do indeed arise as gaugings of Ed(d)

in the universal approach.

5.3.1 Five dimensional gauged supergravity

Compactifying eleven dimensional supergravity on a six dimensional torus and dualising

the C(3) and C(2)m potentials gives a theory with a rigid E6(6) symmetry and one form

potentials AA
(1) (A = 1, . . . ., 27) transforming in the 27 of E6(6). A gauging of the theory,

which breaks the global E6(6) symmetry, sees some of the AA
(1) become non-abelian gauge

bosons, whilst those that are not involved in the gauging must be dualised to massive, self-

dual two forms B(2)A [31]. The difficulty in performing a systematic analysis of the different

gaugings is due, in part, to the fact that different gaugings require different numbers of one

forms to be dualised and therefore the Lagrangians of differing gaugings may appear quite
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different. This problem was overcome in [27] where a doubled formalism was proposed in

which 27 B(2)A are introduced in addition to the 27 AA
(1) and general gauge groups are

allowed. The correct number of physical degrees of freedom is maintained by introducing

additional gauge symmetries which remove the extra unphysical degrees of freedom. When

a choice of gauge group is made, the excess B(2)A are projected out and the AA
(1) not

involved in the gauging are eaten by the remaining B(2)A. This five dimensional example,

reviewed below, was studied at length in [27] where further details may be found.

The subgroup of the global E6(6) symmetry that is to be gauged is specified by an

embedding tensor ΘA
α, giving the generators TA of the gauge group G in terms of the

global symmetry generators Jα of E6(6)

TA = ΘA
αJα (5.28)

The gauge algebra is required to close to give

[TA,TB] = tAB
CTC (5.29)

for some tAB
C . Consistency of the gauging and the requirement of maximal supersymmetry

place constraints on which gaugings and groups are allowed and these constraints were

studied in detail in [30, 28, 29, 27]. One of these is that the embedding tensor is required

to be in the 351 representation of E6(6) × E6(6). The ungauged theory has one-form fields

A(1)
A which transform in the 27 of E6(6), and under the action of the gauge symmetry with

parameters Λ(0)
A(x), these one-forms transform as connections, up to terms annihilated

by projection with the embedding tensor

ΘA
α

(
δΛ(Λ(0))A(1)

A
)

= ΘA
α

(
DΛ(0)

A
)

(5.30)

where the derivative is given by

DΛA
(0) = dAA

(1) + gTBC
AΛB

(0)A
C
(1) (5.31)

It is useful to define the following matrix representation of the gauge group generators

acting on the 27-dimensional representation (TA)B
C ≡ TAB

C where it is stressed that TAB
C

will not be antisymmetric in the lower indices in general. For the gauging defined by the

embedding (5.28) to be consistent (TA)B
C must decompose into the adjoint representation

of the gauge group plus parts that vanish under contraction with the embedding tensor

such that

(TA)B
CΘC

α = −tAB
CΘC

α (5.32)

Using the totally symmetric E6(6) invariant tensors dABC and dABC , the tensor ZAB =

−ZBA is defined as

ZAB = TCD
[AdB]CD (5.33)

such that

T(AB)
C = dABDZCD (5.34)

Furthermore it may be shown that ZABΘB
α = ZABTB = 0. These constraints then

ensure that T(AB)
CΘC

α = dABDZDCΘC
α = 0 so that the TAB

CΘC
α are antisymmetric

TAB
CΘC

α = −TBA
CΘC

α, and they are to are identified with the structure constants of

the gauge group.
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As explained in [27], the required generalisation of the gauge transformation is

δΛ(Λ(0))A(1)
A = dΛ(0)

A − gT[BC]
AΛ(0)

CA(1)
B − gZABΞ(1)B (5.35)

where a shift symmetry with arbitrary parameter Ξ(1)A(x) has been introduced. This

indeed projects to (5.30). The gauge fixing of this symmetry ensures that the number of

degrees of freedom in this doubled formalism reduces to the correct number with the shift

symmetry removing the surplus degrees of freedom. The following results are also useful

TAC
DTBD

E − TBC
DTAD

E + TAB
DTDC

E = 0

T[AB]
CT[DC]

E + T[DA]
CT[BC]

E + T[BD]
CT[AC]

E = dFC[DTAB]
CZFE (5.36)

so that the T[AB]
C only satisfy the Jacobi identity in the subspace projected by the em-

bedding tensor.

5.3.2 E6(6) covariant lagrangian

The bosonic sector of the E6(6) universal Lagrangian is, to quadratic order,

L5 = R ∗ 1 +
1

4
tr

(
∗DM∧ DM−1

)

−
1

2
MAB ∗ H(2)

A ∧H(2)
B +

1

2
gZABB(2)A ∧ DB(2)B + · · · (5.37)

where + · · · denotes terms of higher order. The M are scalars parameterising the coset

space E6(6)/USp(8). The two-form field strength is

H(2)
A = dA(1)

A −
1

2
gT[BC]

AA(1)
B ∧A(1)

C + gZABB(2)N (5.38)

This field strength transforms covariantly as

δ(Λ(0))H(2)
A = −gTCB

AΛ(0)
BH(2)

C (5.39)

under the gauge symmetry generated by the infinitesimal transformations

ZABδB(2)B = ZABDΞ(1)B + gZABΛ(0)
CT[CB]

DB(2)D

−gZAB

(
dBCDdA(1)

C −
1

2
gTEB

CdCDFA(1)
E ∧ A(1)

F

)

δA(1)
A = dΛ(0)

A − gT[BC]
AΛ(0)

BAC
(1) − gZABΞ(1)B (5.40)

These infinitesimals generate the symmetry algebra

[
δΛ(Λ̃(0)), δΛ(Λ(0))

]
= δΛ

(
gT[BC]

AΛ̃(0)
BΛ(0)

C
)
− δΞ

(
gdAB[CTDE]

BΛ̃(0)
CΛD

(0)A(1)
E
)

[
δΞ(Ξ(1)), δΛ(Λ(0))

]
= δΞ

(
1

2
gTCM

BΛ(0)
CΞ(1)B

)

[
δΞ(Ξ̃(0)), δΞ(Ξ(0))

]
= 0 (5.41)
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This symmetry algebra is not a Lie algebra due to the field dependence on the right

hand side of the first commutator and is of the general form of the algebras found in flux

compactifications of field theories on twisted tori (3.7).

The Lagrangian (5.37) is conjectured to describe all possible gaugings of maximal

supergravity in five dimensions, where a specific gauged supergravity is defined by the

appropriate choice of embedding tensor ΘA
α. The fields in (5.37) transform covariantly

under the action of the global E6(6), but for a given gauging the Lagrangian is not invari-

ant. However, if we allow the embedding tensor, and in particular T[AB]
C and ZAB, to

transform under E6(6) then the Lagrangian (5.37) is invariant. The action of the global

E6(6) changes the embedding tensor, relating apparently different gauged supergravities

to each other. One may then think of the E6(6)-invariant Universal Lagrangian (5.37) for

gauged supergravity as the counterpart of the O(d, d) and O(d, d + 16) theories (5.4).

The gauged supergravities in seven dimensions have a similar structure, with an

SL(5, R) invariant action [29]. For even dimensions, the self-duality of field strengths

of degree D/2 makes the construction of the O(5, 5) and E7(7) invariant Lagrangians

with doubled degrees of freedom in six and four dimensions more challenging, but recent

progress [28, 30] suggests that the results of [27] and [29] can be extended to all dimensions.

5.3.3 Symmetry breaking and gauged supergravity

The choice of an embedding tensor breaks the E6(6) invariance of the universal Lagrangian

(5.37). Following [27], an E6(6) basis may be chosen where A = (m,a, u) with m = 1, 2, . . . s,

a = s+1, s+2, . . . 27− t and u = 28− t, 29− t, . . . 27 where s is the rank of the embedding

tensor and t is the rank of ZAB . In this basis the constant E6(6) tensors are written

(Tm)B
C =




−tmn
p hmn

a Cmn
u

0 0 Cma
u

0 0 Dmv
u


 ZAB =




0 0 0

0 0 0

0 0 Zuv


 (5.42)

where Zuv is non-degenerate and invertible. This defines the gauge algebra

[Tm, Tn] = −tmn
pTp + hmn

aTa + Cmn
uTu

[Tm, Ta] = Cma
uTu

[Tm, Tu] = Dmu
vTv (5.43)

which is indeed a subalgebra of E6(6).

All antisymmetric tensors B(2)A appear in the Lagrangian contracted with ZAB , so

the above choice of coordinates project out all but the B(2)u from the theory. Making the

gauge choice

Ξ(1)u = g−1ZuvA(1)
v (5.44)

the gauge bosons A(1)
u are gauged to zero, whilst the B(2)u absorb the A(1)

u degrees of

freedom. Defining the tensor

B̆(2)
u = ZuvB(2)v + g−1DA(1)

u + · · · (5.45)
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the gauged theory, to quadratic order, becomes

L5 = R ∗ 1 +
1

4
tr

(
∗DM∧ DM−1

)

−
1

2
MAB ∗ F(2)

A ∧ F(2)
B +

1

2
gZuvB̆(2)

u ∧ DB̆(2)
v + · · · (5.46)

where

F(2)
A =




F(2)
m

F(2)
a

B̆(2)
u


 (5.47)

and F(2) are covariant field strengths.

F(2)
m = dAm −

1

2
gtnp

mA(1)
n ∧ A(1)

p

F(2)
a = dAa +

1

2
ghmn

aA(1)
m ∧A(1)

n (5.48)

The Lagrangian (5.46) has a gauge symmetry with Lie algebra

[Tm, Tn] = −tmn
pTp + hmn

aTa (5.49)

where all other commutators vanish. Note that this is not a subalgebra of (5.43) in general,

but is the remaining symmetry after the gauge fields A(1)
u have been eliminated.

5.4 Flux compactifications of eleven dimensional supergravity and the universal

lagrangian

Setting the flux and geometric twists to zero, the reductions of section 2 give the reduction

of eleven-dimensional supergravity on T d. The resulting effective theory is a massless,

ungauged, maximal supergravity in D-dimensions with GL(d; R) n R
d(d−1)(d−2)/6 global

symmetry. Dualisation takes the ungauged, massless theory that arises from dimensional

reduction to a theory with a global Ed(d) symmetry. For more general reductions, such as

those considered in this paper, fluxes and curvature of the internal space give rise to massive

deformations and in general one finds obstructions to the usual dualisation procedure.

There is then an issue of whether the Lagrangians produced by flux compactifications on

twisted tori presented here arise within the Universal Lagrangian formalism. We shall

argue that the Lagrangian (2.12) is not described by the Universal Lagrangians, but an

equivalent, dual form can be found which is contained in the Universal formalism. First,

we shall discuss the dualisations needed for the discussion.

5.4.1 Dualisation

It is instructive to begin by reviewing the Hodge dualisation [36]. Consider a D-dimensional

(p − 1)-form gauge theory where the field strength G(p) = dC(p−1) is given in terms of the

potential C(p−1). The equations of motion and Bianchi identity

d ∗ G(p) = 0 dG(p) = 0 (5.50)
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are exchanged under the duality generated by G(p) → H(D−p) = ∗G(p). The dual theory

then has equations of motion and Bianchi identity

d ∗ H(D−p) = 0 dH(D−p) = 0 (5.51)

The dual Bianchi identity allows one to define a potential ϑ(D−p−1) locally such that

H(D−p) = dϑ(D−p−1). This duality may be derived from a Lagrangian by treating the field

strength G(p) as the independent variable and introducing ϑ(D−p−1) as a Lagrange multi-

plier, constraining the theory to satisfy the Bianchi identity dG(p) = 0. The Lagrangian

is

L = −
1

2
∗ G(p) ∧ G(p) + dϑ(D−p−1) ∧ G(p) (5.52)

Variation with respect to G(p) leads to the duality constraint ∗G(p) = H(D−p). Substituting

for G(p) back into the Lagrangian gives the Lagrangian for the dual theory.7

More general models, particularly those based on reductions of eleven-dimensional

supergravity, will have Chern-Simons terms in the field strengths and in the Lagrangian.

It is therefore necessary to generalise the above toy model to include such terms. Consider

a field strength

G(p) = dC(p−1) + W(p) (5.53)

with a Chern-Simons like term W(p) that is not closed in general and the D-dimensional

Lagrangian

L = −
1

2
∗ G(p) ∧ G(p) + Q(q) ∧ dC(p−1) + · · · (5.54)

where Q(q) and terms denoted by + · · · are independent of C(p−1). Following [16], we will

refer to q-form Q(q) with q = D − p as a transgression term; in general, it is not closed.

The field strength satisfies the Bianchi identity

dG(p) = dW(p) (5.55)

and the Chern-Simons term has the property that dW(p) transforms covariantly under the

gauge group even though W(p) generally will not. The reduction of the eleven-dimensional

supergravity on a torus, followed by a truncation to the zero modes, gives a Lagrangian of

this form.

In the toy model above with W = Q = 0, duality exchanges the equations of motion

and Bianchi identity. The exchange G(p) ↔ ∗G(p) is then a symmetry of the theory. In this

more general case, it is no longer the case that G(p) is simply exchanged with its Hodge

dual. The correct duality transformation requires that Q and the Chern-Simons term W

should also be exchanged. Treating the field strength G(p) as an independent variable and

adding a Lagrange multiplier term generalises (5.52) to the Lagrangian

LG,ϑ = −
1

2
∗ G(p) ∧ G(p) + Q(q) ∧

(
G(p) −W(p)

)
+ ϑ(q−1) ∧ d

(
G(p) −W(p)

)
+ · · · (5.56)

7In fact, the dual Lagrangian calculated in this way is L = − 1
2
(−1)p(D−p) ∗ H(D−p) ∧ H(D−p) We shall

assume that ϑ(D−p−1) is rescaled to ξϑ(D−p−1) where ξ2(−1)p(D−p) = −1 to give the kinetic term the

canonical normalisation.
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Variation of this Lagrangian with respect to ϑ(q−1) gives the Bianchi identity (5.55), from

which we may introduce the C(p−1) potential as in (5.53). This definition of the field

strength (5.53) may then be substituted back into (5.56) and the equation of motion

d ∗ G(p) = dQ(q) (5.57)

arises from a subsequent variation with respect to C(p−1). If instead G(p) is treated as the

independent variable, the variation of the Lagrangian (5.56) with respect to G(p) is

G(p) = ∗H(q) (5.58)

where the dual field strength is defined as

H(q) = dϑ(q−1) + Q(q) (5.59)

Substituting for G(p) using (5.58) in the Lagrangian (5.56) gives the dual formulation of

the theory

L̃ =
1

2
∗ H(p) ∧ H(p) −W(p) ∧ H(q) (5.60)

The interchange of Q and W terms is quite clear from this example. This is a general

feature of such dualisations.

This method of dualisation can not be applied to the flux reductions of eleven-dimen-

sional supergravity on T d as will now be demonstrated. In eleven dimensions this theory

has Chern-Simons term

L11 =
1

6
Ĝ ∧ Ĝ ∧ Ĉ (5.61)

If the three-form has a constant left-invariant flux of the form (1.8) then Ĉ = C + $(3),

where K = d$(3), as in section 2. The Chern-Simons term (5.61), after integrations by

parts, becomes

L11 =
1

6
dC ∧ dC ∧ C +

1

2
dC ∧ C ∧ K +

1

2
C ∧ K ∧ K +

1

6
K ∧K ∧ $(3) (5.62)

The last term may be ignored here as it does not contribute to the equations of motion of

C. Reducing (5.62) on T d one finds that the reduced theory includes terms of the form8

LD =
1

2
µC(p−1) ∧ G(q+1) + · · · (5.63)

where D = p + q and µ is a constant parameter related to the constant flux9 Kmnpq. For

example, in D = 7

µ =
1

24
εmnpqKmnpq (5.65)

8See appendix C for details.
9All internal frame indices have been suppressed but in general there will be a contraction of these

indices with an alternating symbol, proportional to

1

2
µ

m1m2...m4−pn1n2...n3−q C(p−1)m1m2...m4−p
∧ G(q+1)n1n2...n3−q

(5.64)
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Terms of the form (5.63) are not included in the Lagrangian (5.56) so the previous con-

siderations must be generalised in the presence of flux. Such terms are mass terms and

occur in two distinct ways. The first type of mass term occurs when p 6= q + 1 and in

principle may occur in any dimension. The second, where p = q + 1, is the special case of

a topologically massive theory and only occur in odd dimensions. The following sections

give explicit constructions of the dual formulations of such Lagrangians.

5.4.2 Duality of massive theories

Consider the Lagrangian

L = −
1

2
∗ G(p) ∧ G(p) −

1

2
∗ F(q+1) ∧ F(q+1) + µC(p−1) ∧ F(q+1) (5.66)

for the potentials C(p−1) and B(q−1) with the field strengths G(p) = dC(p−1) and F(q+1) =

dB(q) where D = p + q and µ is a constant. In terms of (5.54) this Lagrangian has

Q(q) = µB(q). F(q+1) is dualised by introducing a dual potential ϑ(p−2) as a Lagrange

multiplier, to enforce the Bianchi identity dF(q+1) = 0. The constrained Lagrangian is

L = −
1

2
∗ G(p) ∧ G(p) −

1

2
∗ F(q+1) ∧ F(q+1) + µC(p−1) ∧ F(q+1) − ϑ(p−2) ∧ dF(q+1) (5.67)

Considering F(p) as the independent variable and varying (5.67) with respect to it defines

the dual field strength H(p−1) = ∗F(q+1) where

H(p−1) = dϑ(p−2) − µC(p−1) (5.68)

The dual Lagrangian is

L̃ = −
1

2
∗ G(p) ∧ G(p) −

1

2
∗ H(p−1) ∧ H(p−1) (5.69)

This dual theory is invariant under the abelian gauge symmetry generated by the infinites-

imal variations

δC(p−1) = dλ(p−2) δϑ(p−2) = −µλ(p−2) (5.70)

A massive gauge singlet potential may be defined as

S(p−1) = C(p−1) − µ−1dϑ(p−2) (5.71)

such that H(p−1) = −µS(p−1). The dual Lagrangian may then be written

L̃ = −
1

2
∗ dS(p−1) ∧ dS(p−1) −

1

2
µ2 ∗ S(p−1) ∧ S(p−1) (5.72)

The reduction of the eleven-dimensional supergravity to six dimensions with flux contains

terms of the form (5.66) with p = q = 3, which may then be rewritten in the form (5.72).

We anticipate that it is this latter form that arises in the O(5, 5) covariant Universal

Lagrangian.
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5.4.3 Duality of topologically massive theories

Topologically massive theories are possible in odd dimensions for forms of degree 1
2(D −

1) [39 – 41]. Consider the Lagrangian

LC = −
1

2
∗ G(p) ∧ G(p) +

1

2
µC(p−1) ∧ dC(p−1) (5.73)

where G(p) = dC(p−1). Flux reductions of eleven-dimensional supergravity on T d to odd

dimensions generically contain terms of this form. Variation of (5.73) with respect to C(p−1)

leads to the self-duality constraint

d ∗ G(p) − µG(p) = 0 (5.74)

so that G(p) has the number of degrees of freedom one would expect of a massive p-form

field strength. Applying the d∗ operator to this equation produces the equation of motion

for a massive field

(¤ − µ2)G(p) = 0 (5.75)

The self-duality constraint (5.74) implies that ∗dC(p−1) − µC(p−1) is closed so that locally

one may introduce a dual potential ϑ(p−2) such that

∗dC(p−1) − µC(p−1) = dϑ(p−2) (5.76)

The gauge invariance of G(p−1) under the transformation δC(p−1) = dλ(p−2) induces the

transformation in the dual potential δϑ(p−2) = −µλ(p−2).

The standard (massless) dualisation techniques do not work in this topologically mas-

sive case as the Lagrangian can not be written solely in terms of G(p). However there is a

formalism discussed in [42] that may be generalised and used to define a dual Lagrangian.

Consider the first order Lagrangian

LC,S = −G(p) ∧ S(p−1) +
1

2
µG(p) ∧ C(p−1) +

1

2
∗ S(p−1) ∧ S(p−1) (5.77)

where a (p− 1) form field S(p−1) has been introduced. This can be thought of as a doubled

formalism as the set of fields has been doubled. The invariance of this Lagrangian under the

gauge transformation δC(p−1) = dλ(p−2), up to an irrelevant total derivative, requires that

δS(p−1) = 0. Taking the variation of the Lagrangian (5.77) with respect to S(p−1) gives the

constraint G(p) = ∗S(p−1), which when substituted back into LC,S, gives the topologically

massive theory of (5.73). Variation with respect to C(p−1) gives the self duality constraint

d(∗G(p) − µC(p−1)) = 0 and subsequently the equation of motion (¤ − µ2)G(p) = 0.

Alternatively, varying LC,S with respect to C(p−1) gives the complimentary constraint

dS(p−1) = µG(p) which may be written

S(p−1) = µC(p−1) + dϑ(p−2) (5.78)

(5.78) may be thought of as a definition of the massive S(p−1) field in terms of a gauge field

C(p−1) eating ϑ(p−2). Substituting the constraint (5.78) back into the doubled Lagrangian

gives the dual theory

L̃S = −
1

2
µ−1dS(p−1) ∧ S(p−1) +

1

2
∗ S(p−1) ∧ S(p−1) (5.79)
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The equations of motion from LC and L̃S are equivalent so the Lagrangians are classically

dual.

In this way, the quadratic terms of the form (5.73) for 2-form gauge fields in D = 5

and 3-form gauge fields in D = 7 arising from twisted compactifications with flux can be

dualised to (5.79), which is the form of the quadratic term for these gauge fields in the

Universal Lagrangian in these dimensions given in [28] and [29]. It is to be expected that

once the gauge group is chosen and the quadratic form of the theories fixed, supersymmetry

and gauge invariance should determine the theory uniquely. As the two theories agree at

the quadratic level and are gauge invariant and supersymmetric, they should be fully

equivalent. However, the non-linearity of the theory and the need for field redefinitions

makes this hard to verify in general. We shall instead check the full non-linear equivalence

in a particular model simple enough to allow a complete analysis.

5.5 Example: flux compactifications to seven-dimensions

The Universal Lagrangian in seven dimensions was constructed in [29] along the same

lines as the five dimensional case of [28] reviewed in section 5.3. The ungauged theory

has an SL(5, R) symmetry, and this extends to a formal symmetry of the gauged theory

if the embedding tensor that specifies the embedding of the gauge group in SL(5, R) also

transforms. The embedding tensor ΘAB,C
D defines the gauge generators TAB as

TAB = ΘAB,C
DtCD (5.80)

where tCD are the generators of SL(5) and A = 1, 2 . . . 5. It is useful to define the projectors

ZAB,C and YAB in terms of the 5 and 10 representations of the gauge generators TAB,C
D

and TAB,CD
EF = 2TAB,[C

[EδD]
F ] respectively, where

TAB,C
D = ΘAB,C

D = δ[A
DYB]C − 2εABCEFZ

EF,D (5.81)

The theory has the potentials AAB
(1) in the 10 of SL(5) and B(2)A in the 5 of SL(5). In

addition there are self-dual three forms SA
(3) in the 5 representation. The SL(5) and gauge

covariant field strengths for these potentials are

HAB
(2) = dAAB

(1) +
1

2
gTCD,EF

ABACD
(1) ∧ AEF

(1) + gZAB,CB(2)C

H(3)A = DB(2)A + εABCDEA
BC
(1) ∧ dADE

(1) +
2

3
gεABCDET

D
FG,HABC

(1) ∧ AEH
(1) ∧ AFG

(1) +

+gYABS
B
(3)

HA
(4) = DSA

(3) + FAB
(2) ∧ B(2)B +

1

2
gZAB,CB(2)B ∧ B(2)C +

1

3
εBCDEFA

AB
(1) ∧ ACD

(1) ∧ dAEF
(1)

+
1

6
gεBCDEFTGH,I

EAAB
(1) ∧ ACD

(1) ∧ AGH
(1) ∧AIF

(1) (5.82)

where FAB
(2) = HAB

(2) − gZAB,CB(2)C .

As an application of the techniques of section 5.4, consider the reduction of eleven-

dimensional supergravity on a four-dimensional torus to seven dimensions. A flux K is

introduced as described in section 2. Using the field redefinitions of appendix B, the
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Lagrangian of the reduced theory is (2.12) where the Chern-Simons term, given in full in

appendix C, may be written as

Lcs
7 = dC̃(3) ∧ Q(3) −

1

12
εmnpqdC̃(2)m ∧ dC̃(2)n ∧ C̃(1)pq + LTop

7 (5.83)

where G(4) = dC̃(3) + W(4) and

Q(3) = εmnpq

(
−

1

6
C̃(2)m ∧ dC(0)npq +

1

8
C̃(1)mn ∧ dC̃(1)pq

)
(5.84)

is independent of C̃(3). LTop
7 is the topological mass term

LTop
7 =

1

2
µC̃(3) ∧ dC̃(3) (5.85)

and the parameter µ defined by

µ =
1

24
εmnpqKmnpq (5.86)

is the topological mass of the C̃(3) field. As discussed at the end of section 5.4, this mass

term prevents the dualisation of the three form but a dual formulation of the theory may

be found following the discussion of section 5.4.2. Consider the first order Lagrangian

L eC,S = −e2αϕG(4) ∧ S(3) + dC̃(3) ∧

(
Q(3) +

1

2
µC̃(3)

)
+

1

2
∗ S(3) ∧ S(3)

−
1

12
εmnpqdC̃(2)m ∧ dC̃(2)n ∧ C̃(1)pq + L′ (5.87)

generalising that of (5.77), where L′ represents all those terms in the L7 Lagrangian that

neither depend on C̃(3) nor enter into the Chern-Simons term Lcs
7 . Taking the variation of

L eC,S
with respect to S(3) produces the duality constraint

S(3) = e2αϕ ∗ G(4) (5.88)

Substituting this back into the first order Lagrangian (5.87) gives the Lagrangian (2.12)

for the flux compactification of eleven dimensional supergravity on T 4. If instead, the first

order Lagrangian is varied with respect to C̃(3) the constraint d(e2αϕS(3)−Q(3)−µC̃(3)) = 0

arises, which may be written as

e2αϕS(3) = H(3) (5.89)

where H(3) = dϑ(2) + Q(3) + µC̃(3) for some two-form ϑ(2). Combining the duality con-

straint (5.89) with (5.88) gives

e−4αϕ ∗ G(4) = H(3) (5.90)

In the case of zero flux µ = 0 this duality constraint reduces to that required to produce

the SL(5) invariant Lagrangian in the ungauged theory. Substituting the constraint (5.89)

back into the first order Lagrangian (5.87) gives the dual theory

L̃eS
= −

1

2
µS̃(3) ∧

(
dS̃(3) + 2W(4) − 2µ−1dQ(3)

)
+

1

2
µ2e−4αϕ ∗ S̃(3) ∧ S̃(3)
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+
1

2
µ−1Q(3) ∧ dQ(3) −

1

12
εmnpqdC̃(2)m ∧ dC̃(2)n ∧ C̃(1)pq + L′ (5.91)

where the three form S̃(3) is defined S̃(3) = µ−1e2αϕS(3). The gauge variation of the first

two terms in the second line cancel so that this Lagrangian is gauge invariant. Using (5.89)

this Lagrangian may be written in terms of C̃(3)

L̃ = −
1

2
µC̃(3) ∧

(
dC̃(3) + 2W(4)

)
+

1

2
µ2e−4αϕ ∗ H(3) ∧ H(3)

−W(4) ∧ H(3) −
1

12
εmnpqdC̃(2)m ∧ dC̃(2)n ∧ C̃(1)pq + L′ (5.92)

It is then a straightforward, if laborious, process to show that this Lagrangian is equivalent

to the seven dimensional Universal Lagrangian of [29] with embedding tensor defined by

ZAB,C = 0 YAB =
µ

2ε2
1ε2g

δ5
(Aδ5

B) (5.93)

corresponding to the generalised structure constants

TAB,C
D = ΘAB,C

D = −
µ

2ε2
1ε2g

δ5D
ABδ5

C TAB,CD
EF = −

µ

ε2
1ε2g

δ
5[E|
AB δ

5|F ]
CD (5.94)

where the constants ε1 and ε2 are determined by the full universal Lagrangian. The poten-

tials of the Universal Lagrangian are given by the reduced potentials, up to the constant

factors ε1 and ε2 as

A5m
(1) = ε1A

m

ε2εmnpqA
pq
(1)

= C(1)mn

B(2)m =
4ε1

ε2

(
C(2)m +

1

2
C(1)mn ∧ An

)

S5
(3) = −

4ε2
1

ε2

(
C(3) −

1

6
C(1)mn ∧ Am ∧ An

)
(5.95)

The field strengths are related by

H5m
(2) = ε1F

m

ε2εmnpqH
pq
(2) = G(2)mn + C(0)mnpF

p

H(3)m =
4ε1

ε2
G(2)m

H(3)5 = −
2

ε2
2

(
H(3) +

1

6
εmnpqC(0)mnpG(3)q

)

H5
(4) = −

4ε2
1

ε2
G(4) (5.96)

5.6 Other dimensions

In four dimensions the graviphoton field Am and its dual must be included in the same

multiplet to write the ungauged theory in an E7(7)-invariant form. Such a theory in which
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the isometry symmetry is doubled cannot be given a purely geometric interpretation. If

instead only the C(1)mn fields are doubled then it was shown in [8] how the conjectured

Lie algebra of this theory could be embedded in E7(7). In the absence of a the complete

E7(7)-covariant Universal Lagrangian it is difficult to comment on this conjecture. However,

it is clear that the gauge algebra (3.18) is a contraction of that presented in [8] and it is

therefore plausible that the relation between two gauge theories could be similar to the

relation between the CSO(p, q, r) and SO(p + r, q) gaugings of maximal supergravity in

four dimensions presented in [37, 38].

6. Non-geometric solutions and duality

In this paper we have considered in detail the Scherk-Schwarz dimensional reduction with

flux of (the bosonic sector of) 11-dimensional supergravity to any dimension, to define

a lower-dimensional gauged supergravity theory. We expect these to fit into the general

gauged supergravities of [27, 29], and have checked this in detail in the case of certain reduc-

tions to seven dimensions. We have also addressed the issue of whether these reductions

arise from compactifications of M-theory. In general this is not the case. The Scherk-

Schwarz reduction can be thought of as arising from a reduction on a group manifold G

followed by a truncation to a finite set of lower-dimensional fields. For this to arise from a

compactification with mass gap, it is necessary that either G is compact, or that there is a

discrete left-acting subgroup Γ such that G/Γ is compact, in which case the reduction is a

truncation of the compactification on G/Γ, and this can be extended to compactification

of M-theory on G/Γ. This gives a wide class of explicit flux compactifications of M-theory.

An important feature of the general formulations of gauged supergravity of [27, 28, 30,

29] is that they are covariant under the action of the En duality group, and so provide a

formalism to discuss the action of duality transformations in such theories. The situation

is then similar to that described in [5, 21] for compactifications of the heterotic string. In

all of these cases, a conventional reduction on a torus T d gives an ungauged supergravity

theory with a duality symmetry U . Here U = Ed+1 for reduction of M-theory on T d+1 or

type II theory on T d, and U = O(d, d+16) for reduction of heterotic strings on T d. For the

common sector of these theories has U = O(d, d), and this is also the group for reduction

of bosonic strings on T d. The gauged supergravities are deformations of these theories in

which a subgroup H of U is promoted to a local symmetry, so that the minimal couplings

break the original U symmetry to a subgroup containing H. Remarkably, the remainder of

U still has a natural action; it is no longer a symmetry, but acts on the embedding tensor

and gauge coupling constants, so that the mass terms and scalar potential are changed, as

are the minimal couplings. As a result, U acts to take one gauged supergravity to another.

In fact they are equivalent field theories related by a field redefinition, as in [37, 38], but

the embedding of the gauge group in U is changed to a conjugate one.

However, the action of U becomes non-trivial if one tries to lift these theories to higher

dimensions. This was analysed in detail in [21] for the case U = O(d, d). For example,

starting with a twisted torus reduction with twist fmn
p and H-flux Kmnp and gauge algebra

[Zm, Zn] = −fmn
pZp + KmnpX

p
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[Zm,Xn] = fmp
nXp

[Xm,Xn] = 0 (6.1)

it was found that some O(d, d) transformations can interchange twist with flux, or mix them

together to give a new twisted torus reduction with flux. However in other cases, an O(d, d)

transformation can take a geometric compactification to a non-geometric backgrounds such

as a T-fold, with T-duality transition functions [32]. This generalises to the case of M-

theory reductions with flux. In some cases the duality might take a twisted torus reduction

with flux to another twisted torus reduction with flux, with transformation properties for

the twist and flux, generalising the Buscher rules, that can be read off from the supergravity.

In others it must give a non-geometric background, such as U-folds [32], with U-duality

transition functions.

To see how this works in more detail, recall that the data for the gauged (super)gravity

theories arising from (the common sector of) superstring theory is all contained in the

structure constants tAB
C for the gauge group, which is a subgroup of O(d, d). As we saw

in section 5.1, for twisted torus reductions with flux, these are constructed from the twist

(the structure constants fmn
p of the group G) and the flux Kmnp. However for a general

subgroup of O(d, d), the Lie algebra will be of the form

[Zm, Zn] = −fmn
pZp + KmnpX

p

[Zm,Xn] = hmp
nXp + h̃m

npZp

[Xm,Xn] = f̃mn
pX

p + K̃mnpZp (6.2)

and these parameterise the general gauged supergravity theory [21]. The Jacobi identities

constrain the structure constants such that t[AB
DtC]D

E = 0 and the action of the adjoint

representation must be trace-free tAB
B = 0.

In a twisted torus reduction, fmn
p and Kmnp are the twist and flux respectively, sug-

gesting that f̃m
np and K̃mnp might be thought of as a dual twist and dual flux [33, 21].

Under O(d, d) transformations, tAB
C transforms as an O(d, d) tensor, so that in general

T-duality mixes fmn
p, Kmnp, hmp

n, h̃m
np, f̃mn

p and K̃mnp. In special cases, a twisted

torus reduction specified by fmn
p and Kmnp will transform under certain T-dualities to

a new twisted torus reduction specified by some f ′
mn

p, K ′
mnp so that T-duality mixes the

twist and flux to give a new twisted torus reduction of the same form. However, in general

an O(d, d) transformation will lead to a general structure fmn
p, Kmnp, hmp

n, h̃m
np, f̃mn

p

and K̃mnp with dual twist and flux [33, 21]. The interpretation of the dual twist and flux

was discussed in [21] and they typically indicate a non-geometric background. Explicit

constructions of such non-geometric backgrounds were given in [21]. However, they can

also arise from geometric compactifications which are not of twisted torus type, so that it

is misleading to think of f̃m
np and K̃mnp as being intrinsically non-geometric [21]. In the

special case where Kmnp = K̃mnp = 0, hmn
p = fmn

p and h̃m
np = f̃m

np, the algebra (6.2)

is a Drinfeld double [44, 46], suggesting a possible relation between the kind of T-duality

considered here and the Poisson-Lie T-duality of [46, 45, 47].

The generalisation to the heterotic string is straightforward. The duality group is

now O(d, d + 16) and tAB
C becomes an O(d, d + 16) tensor. From section 5.2, there is an
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additional flux Mmn
a and the decomposition of the structure constants tAB

C of the general

gauge algebra generalising (6.2) will have further terms involving the generators Ya.

It is interesting to ask how this extends to M-theory compactifications, and their non-

geometric generalisations. The generator Xm of the heterotic theory, which is associated

with string winding modes, is replaced with the generator Xmn in M-theory, which might

be associated with membrane wrapping modes, so that one would expect the algebra (3.18)

to be become something like

[Zm, Zn] = −fmn
pZp + KmnpqX̆

pq

[
Zm, X̆np

]
= 2hmq

[nX̆p]q + h̃m
npqZq

[
X̆mn, X̆pq

]
= f̃ts

mnpqX̆ts + K̃mnpqtZt (6.3)

where we have used the decomposition of Xmn into X̆mn and X̆m which satisfy X̆p =

fmn
pXmn and fmn

pX̆mn = 0.

As an example of such a reduction, consider the compactification of eleven-dimensional

supergravity on X = S1×G/Γ with internal coordinates (y11, ym) where the flux lies along

the circle direction Kmnp11 and the structure constants of the group G are fmn
p. This is

a compactification of IIA supergravity on a twisted torus G/Γ, lifted to M-theory. The

Neveu-Schwarz sector of the reduced theory has a gauge algebra with (6.1) as a subalgebra.

Replacing G/Γ with a non-geometric background leads to a theory with gauge algebra

containing (6.2) as a subalgebra. The full algebra of this reduction is then a particular

example of the the Lie algebra (6.3).

A general feature of twisted torus reductions with flux is that the gauge algebra has an

abelian subalgebra generated by Xm or X̆mn (with [X,X] = 0). An algebra such as (6.2)

or (6.3) without [X,X] = 0 can arise from non-geometric compactifications, but they can

also arise from geometric compactifications which are not of Scherk-Schwarz type, such as

the WZW compactifications discussed in [21] or compactifications on S4 or S7.

However, this is not quite the whole story. In toroidal compactifications to 6, 5,

and 4 dimensions the anti-symmetric tensor gauge fields C(3), C(2)m and C(1)mn may be

dualised to vector fields θ(1), θ(1)
m and θ(1)

mn respectively. These gauge bosons couple

to gauge generators Y , Ym and Ymn respectively which in each case may be dualised on

the internal manifold to a vector field θ(1)mnpqt coupling to a generator Y mnpqt, which

might be associated with 5-brane wrapping modes. For twisted torus compactifications

with flux we have seen that the same curvatures and fluxes that allow for a non-abelian

gauge symmetry obstruct the dualisation of these fields and the C(3), C(2)m and C(1)mn

potentials remain as massive tensor fields in the gauged supergravity. A particular example

is the case of flux compactifications to seven dimensions, where the C(3) potential cannot

be dualised to a two form and instead appears as a massive field in the gauged supergravity.

However, the universal formalism, reviewed in section 5.3, allows for the dual potentials

to be incorporated through a doubling of the degrees of freedom and so this more general

construction will contain theories in which the dual one-forms θ(1)mnpqt appear as gauge

fields. The gauge algebra might then be expected to be of a form in which all of the
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structure constants are constructed from the data fmn
p and Kmnpq, such as

[Zm, Zn] = −fmn
pZp + KmnpqX̆

pq

[
Zm, X̆np

]
= 2fmq

[nX̆p]q + KmqtsY
npqts

[
Zm, Y npqts

]
= 5fml

[nY pqts]l

[
X̆mn, X̆pq

]
= 2fts

[mY n]pqts (6.4)

with all other commutators vanishing. As commented on in section 5.6, the geometric

reductions considered in this paper produce theories whose gauge algebra is a contraction

of (6.4) with [X,X] = 0 and no Y mnpqr. For certain dimensions (6.4) may be enhanced as

in the case [8] where a similar algebra appears and includes an additional term [Zm, Zn] =

gεmnpqtslY
pqtsl+· · · , which may only occur in four dimensions. For the geometric reductions

considered in this paper it was demonstrated that part of the Xmn symmetry, given by the

projection X̆m = fnp
mXnp, is always broken by any vacuum of the theory. It seems that a

similar statement holds for the generators Y mnpqt in (6.4) where the symmetry generated

by KnpqtY
mnpqt = Y̆ m is broken by the vacuum. This was certainly the case in [8] where

Y̆ m could be identified with X̆m which ensured that the correct number of gauge degrees

of freedom were present in the theory.

All of the gaugings discussed here can be embedded into the universal Lagrangian

formalism reviewed in section 5.3. For example in five dimensions the general gauge algebra

is of the form

[Ti, Tj ] = −tij
kTk + hij

aTa + Cij
uTu

[Ti, Ta] = Cia
uTu

[Ti, Tu] = Diu
vTv (6.5)

where a particular E6(6) basis has been chosen, as described in section 5.3.3 and the struc-

ture constants tab
c = tuv

w = tuv
a = tab

u = 0 all vanish by the constraints on the embedding

tensor [27]. This algebra is broken to

[Ti, Tj ] = −tij
kTk + hij

aTa (6.6)

by any vacuum of the theory so that the Tu are always broken and the Ta give a central

extension of the algebra generated by Ti. A different choice of E6(6) basis will lead to an

equivalent algebra taking a more complicated form. As an example, consider the reduction

of eleven dimensional supergravity on a semi-simple group manifold (with identifications to

compactify, if necessary) with flux. As discussed in sections 4.2 the symmetry generated by

the Xmn is broken by any vacuum of the theory and we can make the identifications of the

generators Ti in (6.5) with Zm and Tu with Xmn, with no generators Ta. The symmetries

generated by Tu ∼ Xmn are broken, so that the remaining symmetry algebra is

[Ti, Tj ] = −tij
kTk (6.7)

The algebras of the geometric theories we have considered in this paper are described

by (6.5), but this algebra also contains generalisations of such gauge algebras arising from

– 37 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
6

compactifications whose lift to M-Theory do not admit a geometric interpretation. These

can be systematically studied in a similar way to those discussed in [21], and we plan to

return to a discussion of such non-geometric backgrounds elsewhere.

A. Useful identities for Oqt
mnp and Π

mnp
qt

Recall the definitions of the constants Oqt
mnp and Πmnp

qt introduced in section 4.2

Oqt
mnp = 3δq

[mfnp]
t

Πmnp
qt =

1

2
δ[m
q ft

np] (A.1)

These objects may be shown to satisfy the following useful identities on a twisted torus

X = G/Γ when G is semi-simple.

Oqt
mnpΠ

mnp
kl = δq

kδ
t
l + fpk

tfl
qp

O[qt]
mnpΠ

mnp
kl = δqt

kl −
1

2
fkl

pfp
qt

Oqt
mnpηqt = 3fmnp

Πmnp
qt ηqt =

1

2
fmnp

Okt
mnpftl

s + Ots
mnpftl

k = 3Oks
[mn|tf|p]l

t

ηmn =
1

4
Ots

mpqO
pq
nts (A.2)

where ηmn is the Cartan-Killing metric. For reductions involving higher degree forms

there are generalisations of these constants. For example, in the reduction of a p-form

Ĉ(p) the mass term in the reduced Lagrangian for the potential C(i)n1n2...np−i
is of the

form (O ·C(i))
2 and the non-linear gauge transformation of the field C(i−1)n1n2...np−i+1

with

parameter λ(i−1)m1m2...mp−i
is of the form δλC(i−1) = O · λ(i−1) where

O
n1n2...np−i
m1m2...mp+1−i =

(p − i + 1)!

2(p − i − 1)!
f[m1m2

n1δn2
m3

δn3
m4

. . . δ
np−i

mp−i+1] (A.3)

B. Field redefinitions for T d reductions

Reduction on T d corresponds to the case where fmn
p = 0. The Chern-Simons term becomes

very complicated under the standard reduction ansatze. To ease the algebra the following

redefinition of the potential can be made, following [16]

Ĉ = C̃(3) + C̃(2)m ∧ σm +
1

2
C̃(1)mn ∧ σm ∧ σn +

1

6
C̃(0)mnpσ

m ∧ σn ∧ σp + $(3) (B.1)

where

C̃(3) = C(3) − C(2)m ∧ Am +
1

2
C(1)mn ∧ Am ∧ An −

1

6
C(0)mnpA

m ∧ An ∧ Ap

C̃(2)m = C(2)m + C(1)mn ∧ An +
1

2
C(0)mnpA

n ∧ Ap
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C̃(1)mn = C(1)mn − C(0)mnpA
p

C̃(0)mnp = C(0)mnp (B.2)

The gauge transformations of these potentials are

δC̃(3) = C̃(2)m ∧ dωm + dλ̃(2)

δC̃(2)m = −C̃(1)mn ∧ dωn + dλ̃(1)m

δC̃(1)mn = C̃(0)mnpdωp + dλ̃(0)mn

δC̃(0)mnp = −Kmnpqω
q (B.3)

where the gauge parameter λ̂ in this basis is defined as

λ̂ = λ̃(2) + λ̃(1)m ∧ σm +
1

2
λ̃(0)mnσm ∧ σn (B.4)

For fnp
m = 0 limit the field strengths (2.9) are

G(4) = dC̃(3) + dC̃(2)m ∧ Am +
1

2
dC̃(1)mn ∧ Am ∧ An +

1

6
dC̃(0)mnp ∧ Am ∧ An ∧ Ap

−
1

24
KmnpqA

m ∧ An ∧ Ap ∧ Aq

G(3)m = dC̃(2)m − dC̃(1)mn ∧ An +
1

2
dC̃(0)mnp ∧ An ∧ Ap +

1

6
KmnpqA

n ∧ Ap ∧ Aq

G(2)mn = dC̃(1)mn + dC̃(0)mnp ∧ Ap −
1

2
KmnpqA

p ∧ Aq

G(1)mnp = dC̃(0)mnp + KmnpqA
q

G(0)mnpq = −Kmnpq (B.5)

and satisfy the Bianchi identities

dG(4) + G(3)m ∧ Fm = 0

dG(3)m + G(2)mn ∧ Fn = 0

dG(2)mn + G(1)mnp ∧ F p = 0

dG(1)mnp + G(0)mnpq ∧ F q = 0

dG(0)mnpq = 0 (B.6)

C. Reduction of Chern-Simons terms

The eleven dimensional Chern-Simons term with flux on the Ĉ field is

Lcs
11 =

1

6
d

(
Ĉ + $(3)

)
∧ d

(
Ĉ + $(3)

)
∧

(
Ĉ + $(3)

)
(C.1)

This may be rewritten modulo surface terms as

Lcs
11 =

1

6
Ĝ ∧ Ĝ ∧ Ĉ +

1

2
Ĝ ∧ Ĉ ∧ K +

1

2
Ĉ ∧K ∧ K +

1

6
K ∧ K ∧ $(3) (C.2)
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where

K =
1

24
Kmnpqσ

m ∧ σn ∧ σp ∧ σq (C.3)

The last term vanishes if D > 0 and the third term vanishes for D > 3.
In the case in which fp

mn = 0, we can use the field definitions of appendix B to give
the reduction of the Chern-Simons term as

Lcs
10 = εm 1

2
dC̃(3) ∧ dC̃(3) ∧ C̃(2)m

Lcs
9 = εmn

(
−

1

4
dC̃(3) ∧ dC̃(3) ∧ C̃(1)mn −

1

2
dC̃(2)m ∧ dC̃(2)n ∧ C̃(3)

)

Lcs
8 = εmnp

(
1

12
dC̃(3) ∧ dC̃(3)C̃(0)mnp −

1

6
dC̃(2)m ∧ dC̃(2)n ∧ C̃(2)p −

1

2
dC̃(3) ∧ dC̃(m) ∧ C̃(1)np

)

Lcs
7 = εmnpq

(
1

6
dC̃(3) ∧ dC̃(2)mC̃(0)npq −

1

12
dC̃(2)m ∧ dC̃(2)n ∧ C̃(1)pq +

1

8
dC̃(1)mn ∧ dC̃(1)pq ∧ C̃(3)

+
1

48
KmnpqdC̃(3) ∧ C̃(3)

)

Lcs
6 = εmnpqt

(
1

12
dC̃(3) ∧ dC̃(1)mnC̃(0)pqt−

1

12
dC̃(2)m ∧ dC̃(2)nC̃(0)pqt+

1

8
dC̃(1)mn ∧ dC̃(1)pq ∧ C̃(2)t

+
1

24
KmnpqdC̃(3) ∧ C̃(2)t

)

Lcs
5 = εmnpqts

(
1

12
dC̃(2)m ∧ dC̃(1)npC̃(0)qts +

1

48
dC̃(1)mn ∧ dC̃(1)pq ∧ C̃(1)ts

−
1

72
dC̃(0)mnp ∧ dC̃(0)qts ∧ C̃(3) +

1

48
dC̃(3) ∧ C̃(1)mnKpqts +

1

48
dC̃(2)m ∧ C̃(2)nKpqts

)

Lcs
4 = εmnpqtsl

(
1

48
dC̃(1)mn ∧ dC̃(1)pqC̃(0)tsl −

1

72
dC̃(0)mnp ∧ dC̃(0)qts ∧ C̃(2)l

+
1

144
dC̃(3)C̃(0)mnpKqtsl −

1

48
dC̃(2)m ∧ C̃(1)npKqtsl

)

Lcs
3 = εmnpqtslj

(
−

1

144
dC̃(0)mnp ∧ dC̃(0)qts ∧ C̃(1)lj +

1

144
dC̃(2)mC̃(0)npqKtslj

+
1

192
dC̃(1)mn ∧ C̃(1)pqKtslj +

1

1152
KmnpqKtsljC̃(3)

)
(C.4)

The reduction of the full case with both twist and flux is straightforward but leads to

more complicated formulae, and these will not be given explicitly here.
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